Calcium magnesium aluminosilicate (CMAS) corrosion behaviors of apatite Ca2La8(SiO4)6O2 thermal barrier coating material

被引:13
作者
Cong, Longkang [1 ]
Li, Wei [1 ]
Guo, Yao [1 ]
Wang, Jiancheng [1 ]
Song, Qiang [1 ]
Gu, Shengyue [2 ]
Zhang, Shouyang [1 ]
机构
[1] Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
[2] Xian Univ Posts & Telecommun, Sch Sci, Dept Mat Phys, Xian 710121, Peoples R China
基金
中国国家自然科学基金;
关键词
Ca2La8(SiO4)(6)O-2 ceramic; Apatite; CMAS; Thermal barrier coating material; HIGH-TEMPERATURE ATTACK; RARE-EARTH; OXIDES; CONDUCTIVITY; DEGRADATION; RESISTANT; RE;
D O I
10.1016/j.corsci.2022.110322
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The calcium magnesium aluminosilicate (CMAS) attack is becoming a critical obstacle to the application of thermal barrier coatings (TBCs). In this work, we prove that Ca2La8(SiO4)(6)O-2 is an effective TBCs material for resisting CMAS attack, and investigates its CMAS corrosion behaviors. The results indicate that no evidence of chemical reactions was found between CMAS and Ca2La8(SiO4)(6)O-2 heat-treated at 1300 ? and 1500 ?. The corrosion of apatite by CMAS occurs via dissolution and re-precipitation processes. At 1300 ?, the apatite Ca2La8(SiO4)(6)O-2 substrates have little evidence of damage. Moreover, the apatite can also effectively block the infiltration of CMAS up to 1500 ?.
引用
收藏
页数:11
相关论文
共 47 条
[1]   Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits [J].
Aygun, Aysegul ;
Vasiliev, Alexander L. ;
Padture, Nitin P. ;
Ma, Xinqing .
ACTA MATERIALIA, 2007, 55 (20) :6734-6745
[2]  
Barin I., 1995, THERMOCHEMICAL DATA, V1, DOI DOI 10.1002/9783527619825
[3]   Role of environmental deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings [J].
Borom, MP ;
Johnson, CA ;
Peluso, LA .
SURFACE & COATINGS TECHNOLOGY, 1996, 86 (1-3) :116-126
[4]   Charge-Induced Disorder Controls the Thermal Conductivity of Entropy-Stabilized Oxides [J].
Braun, Jeffrey L. ;
Rost, Christina M. ;
Lim, Mina ;
Giri, Ashutosh ;
Olson, David H. ;
Kotsonis, George N. ;
Stan, Gheorghe ;
Brenner, Donald W. ;
Maria, Jon-Paul ;
Hopkins, Patrick E. .
ADVANCED MATERIALS, 2018, 30 (51)
[5]   Ceramic materials for thermal barrier coatings [J].
Cao, XQ ;
Vassen, R ;
Stoever, D .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2004, 24 (01) :1-10
[6]   Transient and steady states of Gd2Zr2O7 and 2ZrO2•Y2O3 (ss) interactions with calcium magnesium aluminium silicates [J].
Duluard, Sandrine ;
Delon, Elodie ;
Bonino, Jean-Pierre ;
Malie, Andre ;
Joulia, Aurelien ;
Bianchi, Luc ;
Gomez, Philippe ;
Ansart, Florence .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2019, 39 (04) :1451-1462
[7]   The influence of oxides on the performance of advanced gas turbines [J].
Evans, A. G. ;
Clarke, D. R. ;
Levi, C. G. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2008, 28 (07) :1405-1419
[8]   Effects of surface roughness on CMAS corrosion behavior for thermal barrier coating applications [J].
Guo, Lei ;
Li, Guang ;
Gan, Zhilin .
JOURNAL OF ADVANCED CERAMICS, 2021, 10 (03) :472-481
[9]   Comparison of NaVO3+CMAS mixture and CMAS corrosion to thermal barrier coatings [J].
Guo, Lei ;
Xin, Hui ;
Hu, Chengwu .
CORROSION SCIENCE, 2020, 177
[10]   Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts [J].
Kraemer, Stephan ;
Yang, James ;
Levi, Carlos G. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2008, 91 (02) :576-583