Optimal parameters in the HSS-like methods for saddle-point problems

被引:212
作者
Bai, Zhong-Zhi [1 ]
机构
[1] Chinese Acad Sci, State Key Lab Sci Engn Comp, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100080, Peoples R China
关键词
saddle-point problem; Hermitian and skew-Hermitian splitting; accelerated splitting iteration method; preconditioning property; HERMITIAN SPLITTING METHODS; INEXACT UZAWA ALGORITHMS; ITERATIVE METHODS; PRECONDITIONERS; SYSTEMS; MATRICES;
D O I
10.1002/nla.626
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the Hermitian and skew-Hermitian splitting iteration method and its accelerated variant for solving the large sparse saddle-point problems, we compute their quasi-optimal iteration parameters and the corresponding quasi-optimal convergence factors for the more practical but more difficult case that the (1, 1)-block of the saddle-point matrix is not algebraically equivalent to the identity matrix. In addition, the algebraic behaviors and the clustering properties of the eigenvalues of the preconditioned matrices with respect to these two iterations are investigated in detail, and the formulas for computing good iteration parameters are given under certain principle for optimizing the distribution of the eigenvalues. Copyright (C) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:447 / 479
页数:33
相关论文
共 49 条
  • [1] [Anonymous], 1998, Matrix algorithms: volume 1: basic decompositions
  • [2] [Anonymous], 1997, Applied Numerical Linear Algebra
  • [3] [Anonymous], 1992, Numerical Methods for Large Eigenvalue Problems
  • [4] [Anonymous], 1983, AUGMENTED LAGRANGIAN, DOI DOI 10.1016/S0168-2024(08)70028-6
  • [5] [Anonymous], 1996, Iterative Methods for Sparse Linear Systems
  • [6] Bai ZZ, 2007, IMA J NUMER ANAL, V27, P1, DOI [10.1093/imanum/dr1017, 10.1093/imanum/drl017]
  • [7] Bai ZZ, 2006, MATH COMPUT, V76, P287
  • [8] Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices
    Bai, Zhong-Zhi
    Golub, Gene H.
    Li, Chi-Kwong
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (02) : 583 - 603
  • [9] Bai ZZ, 2006, MATH COMPUT, V75, P791, DOI 10.1090/S0025-5718-05-01801-6
  • [10] On generalized successive overrelaxation methods for augmented linear systems
    Bai, ZZ
    Parlett, BN
    Wang, ZQ
    [J]. NUMERISCHE MATHEMATIK, 2005, 102 (01) : 1 - 38