Riemann-Hilbert Approach to a Generalised Sine Kernel and Applications

被引:46
作者
Kitanine, N. [1 ,2 ]
Kozlowski, K. K. [3 ,4 ]
Maillet, J. M. [3 ,4 ]
Slavnov, N. A. [5 ]
Terras, V. [3 ,4 ]
机构
[1] Univ Cergy Pontoise, LPTM, Cergy Pontoise, France
[2] CNRS, Cergy Pontoise, France
[3] ENS, Phys Lab, Lyon, France
[4] CNRS, Lyon, France
[5] VA Steklov Math Inst, Moscow 117333, Russia
关键词
IMPENETRABLE BOSE-GAS; TEMPERATURE CORRELATORS; ORTHOGONAL POLYNOMIALS; FREDHOLM DETERMINANT; ASYMPTOTICS; PROBABILITY; EXPONENTS; CONSTANT; MODELS;
D O I
10.1007/s00220-009-0878-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the asymptotic behaviour of a generalised sine kernel acting on a finite size interval [-q;q]. We determine its asymptotic resolvent as well as the first terms in the asymptotic expansion of its Fredholm determinant. Further, we apply our results to build the resolvent of truncated Wiener-Hopf operators generated by holomorphic symbols. Finally, the leading asymptotics of the Fredholm determinant allows us to establish the asymptotic estimates of certain oscillatory multidimensional coupled integrals that appear in the study of correlation functions of quantum integrable models.
引用
收藏
页码:691 / 761
页数:71
相关论文
共 46 条
[1]  
[Anonymous], Int. Math. Res. Not, DOI DOI 10.1155/S1073792897000214
[2]  
[Anonymous], TRUNCATED WIENERHOPF
[3]  
[Anonymous], 1994, LECT MATH SCI
[4]  
[Anonymous], CAMBRIDGE MONOGRAPH
[5]  
[Anonymous], 1993, IMPORTANT DEV SOLITO
[6]  
[Anonymous], SUAIKAGUKU
[7]  
[Anonymous], 1900, P LOND MATH SOC
[8]  
[Anonymous], ASYMPTOTICS TOEPLITZ
[9]  
[Anonymous], TOEPLITZ HANKEL DETE
[10]  
[Anonymous], 1964, UKR MAT ZH