A new approach to the identification of high-potential materials for cost-efficient membrane-based post-combustion CO2 capture

被引:37
作者
Roussanaly, Simon [1 ]
Anantharaman, Rahul [1 ]
Lindqvist, Karl [1 ,2 ]
Hagen, Brede [1 ]
机构
[1] SINTEF Energy Res, Sem Saelandsvei 11, NO-7465 Trondheim, Norway
[2] Norwegian Univ Sci & Technol, Dept Energy & Proc Engn, NO-7491 Trondheim, Norway
来源
SUSTAINABLE ENERGY & FUELS | 2018年 / 2卷 / 06期
关键词
CARBON-DIOXIDE CAPTURE; MIXED-MATRIX MEMBRANES; SOLVENT SELECTION; HYBRID MEMBRANE; CEMENT KILN; FLUE-GAS; SEPARATION; DESIGN; IMPACT; PLANT;
D O I
10.1039/c8se00039e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing good membrane modules and materials is a key step towards reducing the cost of membrane-based CO2 capture. While this is traditionally being done through incremental development of existing and new materials, this paper presents a new approach to identify membrane materials with a disruptive potential to reduce the cost of CO2 capture for six potential industrial and power generation cases. For each case, this approach first identifies the membrane properties targets required to reach cost-competitiveness and several cost-reduction levels compared to MEA-based CO2 capture, through the evaluation of a wide range of possible membrane properties. These properties targets are then compared to membrane module properties which can be theoretically achieved using 401 polymeric membrane materials, in order to highlight 73 high-potential materials which could be used by membrane development experts to select materials worth pushing towards further development once practical considerations have been taken into account. Beyond the identification of individual materials, the ranges of membrane properties targets also show the strong potential of membrane-based capture for industrial cases in which the CO2 content in the flue gas is greater than 11%, and that considering CO2 capture ratios lower than 90% would significantly improve the competitiveness of membrane-based capture and lead to potentially significant cost reduction. Finally, it is important to note that the approach discussed here is applicable to other separation technologies and applications beyond CO2 capture, and could help reduce both the cost and time required to develop cost-effective technologies.
引用
收藏
页码:1225 / 1243
页数:19
相关论文
共 66 条
[1]   Emerging CO2 capture systems [J].
Abanades, J. C. ;
Arias, B. ;
Lyngfelt, A. ;
Mattisson, T. ;
Wiley, D. E. ;
Li, H. ;
Ho, M. T. ;
Mangano, E. ;
Brandani, S. .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2015, 40 :126-166
[2]   Preparation and characterization of polyvinyl acetate/zeolite 4A mixed matrix membrane for gas separation [J].
Ahmad, Jamil ;
Hagg, May-Britt .
JOURNAL OF MEMBRANE SCIENCE, 2013, 427 :73-84
[3]   Techno-economic performance of a hybrid membrane - liquefaction process for post-combustion CO2 capture [J].
Anantharaman, Rahul ;
Berstad, David ;
Roussanaly, Simon .
INTERNATIONAL CONFERENCE ON APPLIED ENERGY, ICAE2014, 2014, 61 :1244-1247
[4]  
[Anonymous], 2016, 20 Years of Carbon Capture and Storage: 2016 Accelerating Future Deployment. Insights
[5]  
[Anonymous], 2013, Iron and Steel CCS Study (Techno-Economics Integrated Steel Mill)
[6]  
[Anonymous], ADV CARB DIOX CAPT R
[7]  
[Anonymous], 2016, JOURNAL
[8]  
[Anonymous], D4 9 EUROPEAN BEST P
[9]   CO2/N2 separations with mixed-matrix membranes containing Mg2(dobdc) nanocrystals [J].
Bae, Tae-Hyun ;
Long, Jeffrey R. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (12) :3565-3569
[10]   Membrane gas separations and post-combustion carbon dioxide capture: Parametric sensitivity and process integration strategies [J].
Belaissaoui, Bouchra ;
Willson, David ;
Favre, Eric .
CHEMICAL ENGINEERING JOURNAL, 2012, 211 :122-132