Kirigami-Inspired Nanoconfined Polymer Conducting Nanosheets with 2000% Stretchability

被引:115
作者
Guan, Ying-Shi [1 ,2 ]
Zhang, Zhuolei [1 ,2 ]
Tang, Yichao [3 ]
Yin, Jie [3 ]
Ren, Shenqiang [1 ,2 ]
机构
[1] SUNY Buffalo, Dept Mech & Aerosp Engn, Buffalo, NY 14260 USA
[2] SUNY Buffalo, Res & Educ Energy Environm & Water RENEW, Buffalo, NY 14260 USA
[3] Temple Univ, Dept Mech Engn, Philadelphia, PA 19122 USA
关键词
flexible electronics; freestanding polymer nanosheets; kirigami; stretchability; CRYSTAL-STRUCTURE; ELECTRONICS; SEMICONDUCTOR; TRANSISTORS; FILMS;
D O I
10.1002/adma.201706390
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Stretchable conductors are essential components of wearable electronics. However, such materials typically sacrifice their electronic conductivity to achieve mechanical stretchability and elasticity. Here, the nanoconfinement and air/water interfacial assembly is explored to grow freestanding mechanical endurance conducting polymer nanosheets that can be stretched up to 2000% with simultaneously high electrical conductivity, inspired by kirigami. Such stretchable conductors show remarkable electronic and mechanical reversibility and reproducibility under more than 1000 cycle durability tests with 2000% deformability, which can be accurately predicted using finite element modeling. The conductivity of nanoconfined freestanding conductor nanosheets increases by three orders of magnitude from 2.2 x 10(-3) to 4.002 S cm(-1) is shown, due to the charge-transfer complex formation between polymer chain and halogen, while the electrical conductance of the stretchable kirigami nanosheets can be maintained over the entire strain regime. The nanoconfined polymer nanosheets can also act as a sensor capable of sensing the pressure with high durability and real-time monitoring.
引用
收藏
页数:8
相关论文
共 30 条
[1]   Ordered Stacking of Regioregular Head-to-Tail Polyalkylthiophenes: Insights from the Crystal Structure of Form I′ Poly(3-n-butylthiophene) [J].
Arosio, Paolo ;
Moreno, Margherita ;
Famulari, Antonino ;
Raos, Guido ;
Catellani, Marinella ;
Meille, Stefano Valdo .
CHEMISTRY OF MATERIALS, 2009, 21 (01) :78-87
[2]   Nano-Confinement Induced Chain Alignment in Ordered P3HT Nanostructures Defined by Nanoimprint Lithography [J].
Aryal, Mukti ;
Trivedi, Krutarth ;
Hu, Wenchuang .
ACS NANO, 2009, 3 (10) :3085-3090
[3]   Thin flexible pressure sensors [J].
Ashruf, C.M.A. .
Sensor Review, 2002, 22 (04) :322-327
[4]   MATERIALS SCIENCE Semiconductors that stretch and heal [J].
Bauer, Siegfried ;
Kaltenbrunner, Martin .
NATURE, 2016, 539 (7629) :365-367
[5]   Graphene kirigami [J].
Blees, Melina K. ;
Barnard, Arthur W. ;
Rose, Peter A. ;
Roberts, Samantha P. ;
McGill, Kathryn L. ;
Huang, Pinshane Y. ;
Ruyack, Alexander R. ;
Kevek, Joshua W. ;
Kobrin, Bryce ;
Muller, David A. ;
McEuen, Paul L. .
NATURE, 2015, 524 (7564) :204-+
[6]   Form II Poly(3-butylthiophene): Crystal Structure and Preferred Orientation in Spherulitic Thin Films [J].
Buono, Annamaria ;
Son, Nguyen Hoai ;
Raos, Guido ;
Gila, Liliana ;
Cominetti, Alessandra ;
Catellani, Marinella ;
Meille, Stefano Valdo .
MACROMOLECULES, 2010, 43 (16) :6772-6781
[7]   Stretchable Thin-Film Electrodes for Flexible Electronics with High Deformability and Stretchability [J].
Cheng, Tao ;
Zhang, Yizhou ;
Lai, Wen-Yong ;
Huang, Wei .
ADVANCED MATERIALS, 2015, 27 (22) :3349-3376
[8]   Highly Stretchable Transistors Using a Microcracked Organic Semiconductor [J].
Chortos, Alex ;
Lim, Josh ;
To, John W. F. ;
Vosgueritchian, Michael ;
Dusseault, Thomas J. ;
Kim, Tae-Ho ;
Hwang, Sungwoo ;
Bao, Zhenan .
ADVANCED MATERIALS, 2014, 26 (25) :4253-4259
[9]   All-in-One Shape-Adaptive Self-Charging Power Package for Wearable Electronics [J].
Guo, Hengyu ;
Yeh, Min-Hsin ;
Lai, Ying-Chih ;
Zi, Yunlong ;
Wu, Changsheng ;
Wen, Zhen ;
Hu, Chenguo ;
Wang, Zhong Lin .
ACS NANO, 2016, 10 (11) :10580-10588
[10]   Self-Assembly of All-Conjugated Poly(3-alkylthiophene) Diblock Copolymer Nanostructures from Mixed Selective Solvents [J].
He, Ming ;
Zhao, Lei ;
Wang, Jun ;
Han, Wei ;
Yang, Yuliang ;
Qiu, Feng ;
Lin, Zhiqun .
ACS NANO, 2010, 4 (06) :3241-3247