The role of mixed-layer instabilities in submesoscale turbulence

被引:121
作者
Callies, Joern [1 ]
Flierl, Glenn [1 ]
Ferrari, Raffaele [1 ]
Fox-Kemper, Baylor [2 ]
机构
[1] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA
[2] Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
geophysical and geological flows; ocean circulation; quasi-geostrophic flows; CALIFORNIA CURRENT SYSTEM; UPPER-OCEAN TURBULENCE; HORIZONTAL DEFORMATION; BAROCLINIC WAVES; MIDOCEAN EDDIES; EDDY FIELD; PART I; ENERGY; MESOSCALE; DYNAMICS;
D O I
10.1017/jfm.2015.700
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Upper-ocean turbulence at scales smaller than the mesoscale is believed to exchange surface and thermocline waters, which plays an important role in both physical and biogeochemical budgets. But what energizes this submesoscale turbulence remains a topic of debate. Two mechanisms have been proposed: mesoscale-driven surface frontogenesis and baroclinic mixed-layer instabilities. The goal here is to understand the differences between the dynamics of these two mechanisms, using a simple quasi-geostrophic model. The essence of mesoscale-driven surface frontogenesis is captured by the well-known surface quasi-geostrophic model, which describes the sharpening of surface buoyancy gradients and the subsequent breakup in secondary roll-up instabilities. We formulate a similarly archetypical Eady-like model of submesoscale turbulence induced by mixed-layer instabilities. The model captures the scale and structure of this baroclinic instability in the mixed layer. A wide range of scales are energized through a turbulent inverse cascade of kinetic energy that is fuelled by the submesoscale mixed-layer instability. Major differences to mesoscale-driven surface frontogenesis are that mixed-layer instabilities energize the entire depth of the mixed layer and produce larger vertical velocities. The distribution of energy across scales and in the vertical produced by our simple model of mixed-layer instabilities compares favourably to observations of energetic wintertime submesoscale flows, suggesting that it captures the leading-order balanced dynamics of these flows. The dynamics described here in an oceanographic context have potential applications to other geophysical fluids with layers of different stratifications.
引用
收藏
页码:5 / 41
页数:37
相关论文
共 96 条
[2]   ON THE BEHAVIOR OF BAROCLINIC WAVES UNDERGOING HORIZONTAL DEFORMATION .2. ERROR-BOUND AMPLIFICATION AND ROSSBY-WAVE DIAGNOSTICS [J].
BISHOP, CH .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1993, 119 (510) :241-267
[3]  
BISHOP CH, 1993, Q J ROY METEOR SOC, V119, P221, DOI 10.1002/qj.49711951002
[4]  
BLUMEN W, 1978, J ATMOS SCI, V35, P774, DOI 10.1175/1520-0469(1978)035<0774:UPVFPI>2.0.CO
[5]  
2
[6]  
BLUMEN W, 1979, J ATMOS SCI, V36, P1925, DOI 10.1175/1520-0469(1979)036<1925:OSWBI>2.0.CO
[7]  
2
[8]   Mixed layer instabilities and restratification [J].
Boccaletti, Giulio ;
Ferrari, Raffaele ;
Fox-Kemper, Baylor .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2007, 37 (09) :2228-2250
[9]  
BOYD JP, 1992, J ATMOS SCI, V49, P128, DOI 10.1175/1520-0469(1992)049<0128:TESOFT>2.0.CO
[10]  
2