Predicting lymphatic filariasis transmission and elimination dynamics using a multi-model ensemble framework

被引:34
作者
Smith, Morgan E. [1 ]
Singh, Brajendra K. [1 ]
Irvine, Michael A. [2 ]
Stolk, Wilma A. [3 ]
Subramanian, Swaminathan [4 ]
Hollingsworth, T. Deirdre [2 ,5 ]
Michael, Edwin [1 ]
机构
[1] Univ Notre Dame, Dept Biol Sci, Notre Dame, IN 46556 USA
[2] Univ Warwick, Sch Life Sci, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England
[3] Erasmus MC, Univ Med Ctr Rotterdam, Dept Publ Hlth, Rotterdam, Netherlands
[4] Indian Council Med Res, Vector Control Res Ctr, Indira Nagar, Pondicherry 650006, India
[5] Univ Warwick, Math Inst, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England
关键词
Neglected tropical disease; Lymphatic filariasis; Macroparasite dynamics; Multi-model ensemble; Model calibration and validation; Control dynamics; WUCHERERIA-BANCROFTI INFECTION; WATER-QUALITY CRITERIA; SOUTH-INDIA; POPULATION-DYNAMICS; VECTOR CONTROL; MODEL; PONDICHERRY; SCIENCE; DISEASE; IMPACT;
D O I
10.1016/j.epidem.2017.02.006
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Mathematical models of parasite transmission provide powerful tools for assessing the impacts of interventions. Owing to complexity and uncertainty, no single model may capture all features of transmission and elimination dynamics. Multi-model ensemble modelling offers a framework to help overcome biases of single models. We report on the development of a first multi-model ensemble of three lymphatic filariasis (LF) models (EPIFIL, LYMFASIM, and TRANSFIL), and evaluate its predictive performance in comparison with that of the constituents using calibration and validation data from three case study sites, one each from the three major LF endemic regions: Africa, Southeast Asia and Papua New Guinea (PNG). We assessed the performance of the respective models for predicting the outcomes of annual MDA strategies for various baseline scenarios thought to exemplify the current endemic conditions in the three regions. The results show that the constructed multi-model ensemble outperformed the single models when evaluated across all sites. Single models that best fitted calibration data tended to do less well in simulating the out-of-sample, or validation, intervention data. Scenario modelling results demonstrate that the multi-model ensemble is able to compensate for variance between single models in order to produce more plausible predictions of intervention impacts. Our results highlight the value of an ensemble approach to modelling parasite control dynamics. However, its optimal use will require further methodological improvements as well as consideration of the organizational mechanisms required to ensure that modelling results and data are shared effectively between all stakeholders. (C) 2017 The Authors. Published by Elsevier B.V.
引用
收藏
页码:16 / 28
页数:13
相关论文
共 59 条
[11]   Geographic and ecologic heterogeneity in elimination thresholds for the major vector-borne helminthic disease, lymphatic filariasis [J].
Gambhir, Manoj ;
Bockarie, Moses ;
Tisch, Daniel ;
Kazura, James ;
Remais, Justin ;
Spear, Robert ;
Michael, Edwin .
BMC BIOLOGY, 2010, 8
[12]   Atmospheric science - Weather forecasting with ensemble methods [J].
Gneiting, T ;
Raftery, AE .
SCIENCE, 2005, 310 (5746) :248-249
[13]   Modeling targeted layered containment of an influenza pandemic in the United States [J].
Halloran, M. Elizabeth ;
Ferguson, Neil M. ;
Eubank, Stephen ;
Longini, Ira M., Jr. ;
Cummings, Derek A. T. ;
Lewis, Bryan ;
Xu, Shufu ;
Fraser, Christophe ;
Vullikanti, Anil ;
Germann, Timothy C. ;
Wagener, Diane ;
Beckman, Richard ;
Kadau, Kai ;
Barrett, Chris ;
Macken, Catherine A. ;
Burke, Donald S. ;
Cooley, Philip .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (12) :4639-4644
[14]   Modeling infectious disease dynamics in the complex landscape of global health [J].
Heesterbeek, Hans ;
Anderson, Roy M. ;
Andreasen, Viggo ;
Bansal, Shweta ;
De Angelis, Daniela ;
Dye, Chris ;
Eames, Ken T. D. ;
Edmunds, W. John ;
Frost, Simon D. W. ;
Funk, Sebastian ;
Hollingsworth, T. Deirdre ;
House, Thomas ;
Isham, Valerie ;
Klepac, Petra ;
Lessler, Justin ;
Lloyd-Smith, James O. ;
Metcalf, C. Jessica E. ;
Mollison, Denis ;
Pellis, Lorenzo ;
Pulliam, Juliet R. C. ;
Roberts, Mick G. ;
Viboud, Cecile .
SCIENCE, 2015, 347 (6227) :1216-U29
[15]   Bayesian model averaging: A tutorial [J].
Hoeting, JA ;
Madigan, D ;
Raftery, AE ;
Volinsky, CT .
STATISTICAL SCIENCE, 1999, 14 (04) :382-401
[16]   Modelling strategies to break transmission of lymphatic filariasis - aggregation, adherence and vector competence greatly alter elimination [J].
Irvine, M. A. ;
Reimer, L. J. ;
Njenga, S. M. ;
Gunawardena, S. ;
Kelly-Hope, L. ;
Bockarie, M. ;
Hollingsworth, T. D. .
PARASITES & VECTORS, 2015, 8
[17]   Mathematical modelling of lymphatic filariasis elimination programmes in India: required duration of mass drug administration and post-treatment level of infection indicators [J].
Jambulingam, Purushothaman ;
Subramanian, Swaminathan ;
de Vlas, S. J. ;
Vinubala, Chellasamy ;
Stolk, W. A. .
PARASITES & VECTORS, 2016, 9
[18]   Medium-range multimodel ensemble combination and calibration [J].
Johnson, Christine ;
Swinbank, Richard .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2009, 135 (640) :777-794
[19]   Towards the endgame and beyond: complexities and challenges for the elimination of infectious diseases [J].
Klepac, Petra ;
Metcalf, C. Jessica E. ;
McLean, Angela R. ;
Hampson, Katie .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2013, 368 (1623)
[20]   Ensemble modeling for analysis of cell signaling dynamics [J].
Kuepfer, Lars ;
Peter, Matthias ;
Sauer, Uwe ;
Stelling, Joerg .
NATURE BIOTECHNOLOGY, 2007, 25 (09) :1001-1006