High-Performance Solid-State Thermionic Energy Conversion Based on 2D van der Waals Heterostructures: A First-Principles Study

被引:26
作者
Wang, Xiaoming [1 ,2 ]
Zebarjadi, Mona [3 ,4 ]
Esfarjani, Keivan [4 ,5 ,6 ]
机构
[1] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA
[2] Univ Toledo, Wright Ctr Photovolta Innovat & Commercializat, 2801 W Bancroft St, Toledo, OH 43606 USA
[3] Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22904 USA
[4] Univ Virginia, Dept Mat Sci, Charlottesville, VA 22904 USA
[5] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA
[6] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA
基金
美国国家科学基金会;
关键词
TRANSITION-METAL DICHALCOGENIDES; TRANSPORT; MOLYBDENUM;
D O I
10.1038/s41598-018-27430-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Two-dimensional (2D) van der Waals heterostructures (vdWHs) have shown multiple functionalities with great potential in electronics and photovoltaics. Here, we show their potential for solid-state thermionic energy conversion and demonstrate a designing strategy towards high-performance devices. We propose two promising thermionic devices, namely, the p-type Pt-G-WSe2-G-Pt and n-type Sc-WSe2-MoSe2-WSe2-Sc. We characterize the thermionic energy conversion performance of the latter using first-principles GW calculations combined with real space Green's function (GF) formalism. The optimal barrier height and high thermal resistance lead to an excellent performance. The proposed device is found to have a room temperature equivalent figure of merit of 1.2 which increases to 3 above 600 K. A high performance with cooling efficiency over 30% of the Carnot efficiency above 450 K is achieved. Our designing and characterization method can be used to pursue other potential thermionic devices based on vdWHs.
引用
收藏
页数:9
相关论文
共 52 条
[1]   Dielectric Genome of van der Waals Heterostructures [J].
Andersen, Kirsten ;
Latini, Simone ;
Thygesen, Kristian S. .
NANO LETTERS, 2015, 15 (07) :4616-4621
[2]   Single-layer MoS2 on Au(111): Band gap renormalization and substrate interaction [J].
Bruix, Albert ;
Miwa, Jill A. ;
Hauptmann, Nadine ;
Wegner, Daniel ;
Ulstrup, Soren ;
Gronborg, Signe S. ;
Sanders, Charlotte E. ;
Dendzik, Maciej ;
Cabo, Antonija Grubisic ;
Bianchi, Marco ;
Lauritsen, Jeppe V. ;
Khajetoorians, Alexander A. ;
Hammer, Bjork ;
Hofmann, Philip .
PHYSICAL REVIEW B, 2016, 93 (16)
[3]   Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2 [J].
Cheiwchanchamnangij, Tawinan ;
Lambrecht, Walter R. L. .
PHYSICAL REVIEW B, 2012, 85 (20)
[4]   Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures [J].
Chen, Chun-Chung ;
Li, Zhen ;
Shi, Li ;
Cronin, Stephen B. .
NANO RESEARCH, 2015, 8 (02) :666-672
[5]   Ultralow thermal conductivity in disordered, layered WSe2 crystals [J].
Chiritescu, Catalin ;
Cahill, David G. ;
Nguyen, Ngoc ;
Johnson, David ;
Bodapati, Arun ;
Keblinski, Pawel ;
Zschack, Paul .
SCIENCE, 2007, 315 (5810) :351-353
[6]   Nanoscale device modeling: the Green's function method [J].
Datta, S .
SUPERLATTICES AND MICROSTRUCTURES, 2000, 28 (04) :253-278
[7]   Thermoelectric properties of a nanocontact made of two-capped single-wall carbon nanotubes calculated within the tight-binding approximation [J].
Esfarjani, K ;
Zebarjadi, M ;
Kawazoe, Y .
PHYSICAL REVIEW B, 2006, 73 (08)
[8]   Ohmic Contacts to 2D Semiconductors through van der Waals Bonding [J].
Farmanbar, Mojtaba ;
Brocks, Geert .
ADVANCED ELECTRONIC MATERIALS, 2016, 2 (04)
[9]   Controlling the Schottky barrier at MoS2/metal contacts by inserting a BN monolayer [J].
Farmanbar, Mojtaba ;
Brocks, Geert .
PHYSICAL REVIEW B, 2015, 91 (16)
[10]  
Ferretti A., WANT CODE