Instrument-model refinement in normalized reciprocal-vector space for X-ray Laue diffraction

被引:1
|
作者
Kaminski, Radoslaw [1 ]
Szarejko, Dariusz [1 ]
Pedersen, Martin N. [2 ]
Hatcher, Lauren E. [3 ,4 ]
Laski, Piotr [1 ]
Raithby, Paul R. [3 ]
Wulff, Michael [5 ]
Jarzembska, Katarzyna N. [1 ]
机构
[1] Univ Warsaw, Dept Chem, Zwirki & Wigury 101, PL-02089 Warsaw, Poland
[2] Univ Copenhagen, Niels Bohr Inst, Univ Pk 5, DK-2100 Copenhagen, Denmark
[3] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England
[4] Cardiff Univ, Sch Chem, Main Bldg,Pk Pl, Cardiff CF10 3AT, Wales
[5] European Synchrotron Radiat Facil, 71 Ave Martyrs, F-38043 Grenoble, France
基金
英国工程与自然科学研究理事会; 美国国家卫生研究院;
关键词
data processing; Laue diffraction; instrument models; refinement; X-ray diffraction; TIME; ALGORITHM; PROTEIN; PUMP; CRYSTALLOGRAPHY; PHOTOCHEMISTRY; REFLECTIONS; COMPLEXES; TOOLKIT; LIGHT;
D O I
10.1107/S1600576720011929
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A simple yet efficient instrument-model refinement method for X-ray diffraction data is presented and discussed. The method is based on least-squares minimization of differences between respective normalized (i.e. unit length) reciprocal vectors computed for adjacent frames. The approach was primarily designed to work with synchrotron X-ray Laue diffraction data collected for small-molecule single-crystal samples. The method has been shown to work well on both simulated and experimental data. Tests performed on simulated data sets for small-molecule and protein crystals confirmed the validity of the proposed instrument-model refinement approach. Finally, examination of data sets collected at both BioCARS 14-ID-B (Advanced Photon Source) and ID09 (European Synchrotron Radiation Facility) beamlines indicated that the approach is capable of retrieving goniometer parameters (e.g. detector distance or primary X-ray beam centre) reliably, even when their initial estimates are rather inaccurate.
引用
收藏
页码:1370 / 1375
页数:6
相关论文
共 50 条
  • [1] Reciprocal-space mapping calculations of X-ray Laue diffraction in a crystal with thermomigration channels
    Punegov, Vasily
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2025, 58 : 260 - 268
  • [2] Hybrid reciprocal space for X-ray diffraction in epitaxic layers
    Morelhao, Sergio L.
    Domagala, Jarek Z.
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2007, 40 : 546 - 551
  • [3] Powder X-ray Diffraction: direct space, reciprocal space, and between the two
    Jung, Dubravka Sisak
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2022, 78 : A76 - A76
  • [4] X-ray pulse compressors in Laue diffraction geometry
    Wu, Chen
    Yang, Chuan
    Zhu, Ye
    Hu, Kai
    Xing, Zhenjiang
    Xu, Zhongmin
    Wu, Juhao
    Zhang, Weiqing
    OPTICS LETTERS, 2025, 50 (01) : 113 - 116
  • [5] X-RAY LAUE DIFFRACTION FROM PROTEIN CRYSTALS
    MOFFAT, K
    SZEBENYI, D
    BILDERBACK, D
    SCIENCE, 1984, 223 (4643) : 1423 - 1425
  • [6] PHOTOEFFECT UNDER CONDITIONS OF THE X-RAY LAUE DIFFRACTION
    AFANASIEV, AM
    IMAMOV, RM
    MASLOV, AV
    PASHAEV, EM
    DOKLADY AKADEMII NAUK SSSR, 1983, 273 (03): : 609 - 612
  • [7] X-RAY PATH THROUGH CALCITE IN LAUE DIFFRACTION
    ROGOSA, GL
    SCHWARZ, G
    JOURNAL OF APPLIED PHYSICS, 1955, 26 (08) : 967 - 968
  • [8] Reciprocal space mapping and strain scanning using X-ray diffraction microscopy
    Poulsen, H.F. (hfpo@fysik.dtu.dk), 1600, Wiley-Blackwell (51):
  • [9] BIOMOLECULAR CRYSTALS: FROM X-RAY DIFFRACTION TOPOGRAPHY TO RECIPROCAL SPACE MAPPING
    Stojanoff, V.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2002, 58 : C44 - C44
  • [10] Reciprocal space mapping and strain scanning using X-ray diffraction microscopy
    Poulsen, H. F.
    Cook, P. K.
    Leemreize, H.
    Pedersen, A. F.
    Yildirim, C.
    Kutsal, M.
    Jakobsen, A. C.
    Trujillo, J. X.
    Ormstrup, J.
    Detlefs, C.
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2018, 51 : 1428 - 1436