Polyindole batteries and supercapacitors

被引:87
作者
Marriam, Ifra [1 ,2 ]
Wang, Yuanhao [1 ]
Tebyetekerwa, Mike [3 ]
机构
[1] Shenzhen Polytech, Hoffmann Inst Adv Mat, 7098 Liuxian Blvd, Shenzhen 518055, Peoples R China
[2] Queensland Univ Technol QUT, Sch Mech Med & Proc Engn, Brisbane, Qld 4001, Australia
[3] Australian Natl Univ, Coll Engn & Comp Sci, Res Sch Elect Energy & Mat Engn, Canberra, ACT 2601, Australia
基金
中国国家自然科学基金;
关键词
Polyindole conducting polymer; Batteries; Supercapacitors; Electrochemical energy storage; Electrodes; HIGH-PERFORMANCE SUPERCAPACITOR; VOLUMETRIC CAPACITIVE PERFORMANCE; ELECTROCHEMICAL ENERGY-STORAGE; REDUCED GRAPHENE OXIDE; CONDUCTING-POLYMER; ELECTRODE MATERIAL; POROUS CARBON; COMPOSITE ELECTRODE; ANODE MATERIALS; INTERFACIAL SYNTHESIS;
D O I
10.1016/j.ensm.2020.08.010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polyindole (Pind) is one of the rising conducting polymers (CPs) finding application in energy, sensors, biomedicine, corrosion protection, and catalysis. Pind and its composites of carbon, metal oxides and transitional metal dichalcogenides are gaining enormous attention as electrodes in batteries and supercapacitors. Herein, the methods to synthesize (polymerize) and utilize Pind-based electrodes in batteries and supercapacitors are systematically reviewed. A critical perspective and future works to be done to push the performance of these electrodes for electrochemical energy storage are also discussed.
引用
收藏
页码:336 / 359
页数:24
相关论文
共 50 条
[21]   Metal-organic frameworks for energy storage devices: Batteries and supercapacitors [J].
Mehtab, Tahira ;
Yasin, Ghulam ;
Arif, Muhammad ;
Shakeel, Muhammad ;
Korai, Rashid Mustafa ;
Nadeem, Muhammad ;
Muhammad, Noor ;
Lu, Xia .
JOURNAL OF ENERGY STORAGE, 2019, 21 :632-646
[22]   Recent advances on nitrogen doped porous carbon micro-supercapacitors: New directions for wearable electronics [J].
Basha, D. Baba ;
Ahmed, Sultan ;
Ahmed, Ahsan ;
Gondal, M. A. .
JOURNAL OF ENERGY STORAGE, 2023, 60
[23]   Hierarchically nanostructured transition metal oxides for supercapacitors [J].
Zheng, Mingbo ;
Xiao, Xiao ;
Li, Lulu ;
Gu, Peng ;
Dai, Xiao ;
Tang, Hao ;
Hu, Qin ;
Xue, Huaiguo ;
Pang, Huan .
SCIENCE CHINA-MATERIALS, 2018, 61 (02) :185-209
[24]   Heterogeneous Nanostructures for Sodium Ion Batteries and Supercapacitors [J].
Zhu, Changrong ;
Yang, Peihua ;
Chao, Dongliang ;
Mai, Wenjie ;
Fan, Hong Jin .
CHEMNANOMAT, 2015, 1 (07) :458-476
[25]   Where Do Batteries End and Supercapacitors Begin? [J].
Simon, Patrice ;
Gogotsi, Yury ;
Dunn, Bruce .
SCIENCE, 2014, 343 (6176) :1210-1211
[26]   Editorial: Advances in Inorganic Materials for Supercapacitors and Batteries [J].
Malaie, Keyvan ;
Dall'Agnese, Yohan ;
Kazemi, Sayed Habib .
FRONTIERS IN CHEMISTRY, 2022, 10
[27]   Conductive MOFs: Synthesis and Applications in Supercapacitors and Batteries [J].
Duan, Pan ;
Dai, Wenlei ;
Wang, Zixuan ;
Chen, Ming ;
Niu, Liang ;
Wu, Taizheng ;
Zeng, Liang ;
Feng, Guang .
BATTERIES & SUPERCAPS, 2024, 7 (03)
[28]   Recent Progress of the Application of Electropolymerization in Batteries and Supercapacitors: Specific Design of Functions in Electrodes [J].
Lin, Shengxuan ;
Wu, Qingping ;
Lu, Yan .
CHEMELECTROCHEM, 2024, 11 (12)
[29]   Improved electrochemical performance of polyindole/carbon nanotubes composite as electrode material for supercapacitors [J].
Zhi-Jiang Cai ;
Qin Zhang ;
Xian-You Song .
Electronic Materials Letters, 2016, 12 :830-840
[30]   Graphene and its nanocomposites used as an active materials for supercapacitors [J].
Ates, Murat .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2016, 20 (06) :1509-1526