Optimality condition and algorithm with deviation integral for global optimization

被引:13
|
作者
Yao, Yirong [2 ]
Chen, Liu [2 ]
Zheng, Quan [1 ,2 ]
机构
[1] Columbus State Univ, Dept Math, Columbus, GA 31907 USA
[2] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
关键词
Global optimization; Integral global minimization; Global optimality condition; Robust analysis; Deviation integral; Stochastic implementation; MINIMIZATION;
D O I
10.1016/j.jmaa.2009.04.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To study the integral global minimization, a general form of deviation integral is introduced and its properties are examined in this work. In terms of the deviation integral, optimality, condition and algorithms are given. Algorithms are implemented by a properly designed Monte Carlo simulation. Numerical tests are given to show the effectiveness of the method. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:371 / 384
页数:14
相关论文
共 50 条
  • [21] Novel Global Optimization Algorithm with a Space-Filling Curve and Integral Function
    Wang Zhong-Yu
    Yang Yong-Jian
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2021, 9 (03) : 619 - 640
  • [22] Global optimality condition and fixed point continuation algorithm for non-Lipschitz ?p regularized matrix minimization
    Dingtao Peng
    Naihua Xiu
    Jian Yu
    ScienceChina(Mathematics), 2018, 61 (06) : 1139 - 1152
  • [23] Global optimality condition and fixed point continuation algorithm for non-Lipschitz ℓp regularized matrix minimization
    Dingtao Peng
    Naihua Xiu
    Jian Yu
    Science China Mathematics, 2018, 61 : 1139 - 1152
  • [24] Fractional and Trigonal Deviation Integral Approaches for Constrained Global Minimization
    Yao, Yirong
    Chen, Sihao
    Zheng, Quan
    2014 SEVENTH INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION (CSO), 2014, : 252 - 256
  • [25] Global optimality condition and fixed point continuation algorithm for non-Lipschitz a lp regularized matrix minimization
    Peng, Dingtao
    Xiu, Naihua
    Yu, Jian
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (06) : 1139 - 1152
  • [26] A NEW SEQUENTIAL OPTIMALITY CONDITION FOR CONSTRAINED OPTIMIZATION AND ALGORITHMIC CONSEQUENCES
    Andreani, Roberto
    Martinez, J. M.
    Svaiter, B. F.
    SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (06) : 3533 - 3554
  • [27] Global Optimality Conditions for Some Classes of Optimization Problems
    Wu, Z. Y.
    Rubinov, A. M.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 145 (01) : 164 - 185
  • [28] Global Optimality in Low-Rank Matrix Optimization
    Zhu, Zhihui
    Li, Qiuwei
    Tang, Gongguo
    Wakin, Michael B.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (13) : 3614 - 3628
  • [29] Global Optimality Conditions for Some Classes of Optimization Problems
    Z. Y. Wu
    A. M. Rubinov
    Journal of Optimization Theory and Applications, 2010, 145 : 164 - 185
  • [30] A New Integral Function Algorithm for Global Optimization and Its Application to the Data Clustering Problem
    Pandiya R.
    Ahdika A.
    Khomsah S.
    Ramadhani R.D.
    Mendel, 2023, 29 (02) : 162 - 168