Optimizing synthesis conditions of nanoscale zero-valent iron (nZVI) through aqueous reactivity assessment

被引:17
|
作者
Han, Yanlai [1 ]
Yang, Michael D. Y. [1 ]
Zhang, Weixian [2 ]
Yan, Weile [1 ]
机构
[1] Texas Tech Univ, Dept Civil & Environm Engn, Lubbock, TX 79409 USA
[2] Tongji Univ, State Key Lab Pollut Control & Resources Reuse, Shanghai 200092, Peoples R China
关键词
iron nanoparticles; nanoscale iron particles (nZVI); synthesis; characterization; Cu(II) reduction; nitrate reduction; ZEROVALENT IRON; TCE DECHLORINATION; NITRATE REDUCTION; NANOPARTICLES; REMOVAL; SURFACE; SHELL; WATER; ELECTROCHEMISTRY; SPECTROSCOPY;
D O I
10.1007/s11783-015-0784-z
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Nanoscale iron particles (nZVI) is one of the most important engineered nanomaterials applied to environmental pollution control and abatement. Although a multitude of synthesis approaches have been proposed, a facile method to screen the reactivity of candidate nZVI materials produced using different methods or under varying synthesis conditions has yet been established. In this study, four reaction parameters were adjusted in the preparation of borohydride-reduced nZVI. The reductive properties of the resultant nanoparticles were assayed independently using two model aqueous contaminants, Cu (II) and nitrate. The results confirm that the reductive reactivity of nZVI is most sensitive to the initial concentration of iron precursor, borohydride feed rate, and the loading ratio of borohydride to ferric ion during particle synthesis. Solution mixing speed, in contrast, carries a relative small weight on the reactivity of nZVI. The two probing reactions (i.e., Cu(II) and nitrate reduction) are able to generate consistent and quantitative inference about the mass-normalized surface activity of nZVI. However, the nitrate assay is valid in dilute aqueous solutions only (50 mga (TM) L-1 or lower) due to accelerated deactivation of iron surface at elevated nitrate concentrations. Additional insights including the structural and chemical makeup of nZVI can be garnered from Cu(II) reduction assessments. The reactivity assays investigated in this study can facilitate screening of candidate materials or optimization of nZVI production parameters, which complement some of the more sophisticated but less chemically specific material characterization methods used in the nZVI research.
引用
收藏
页码:813 / 822
页数:10
相关论文
共 50 条
  • [31] Degradation of trichloroethene by nanoscale zero-valent iron (nZVI) and nZVI activated persulfate in the absence and presence of EDTA
    Dong, Haoran
    He, Qi
    Zeng, Guangming
    Tang, Lin
    Zhang, Lihua
    Xie, Yankai
    Zeng, Yalan
    Zhao, Feng
    CHEMICAL ENGINEERING JOURNAL, 2017, 316 : 410 - 418
  • [32] Investigation of washing and storage strategy on aging of Mg-aminoclay (MgAC) coated nanoscale zero-valent iron (nZVI) particles
    Hwang, Yuhoon
    Lee, Young-Chul
    Mines, Paul D.
    Oh, You-Kwan
    Choi, Jin Seok
    Andersen, Henrik R.
    CHEMICAL ENGINEERING SCIENCE, 2014, 119 : 310 - 317
  • [33] Structural Evolution of Pd-Doped Nanoscale Zero-Valent Iron (nZVI) in Aqueous Media and Implications for Particle Aging and Reactivity
    Yan, Weile
    Herzing, Andrew A.
    Li, Xiao-Qin
    Kiely, Christopher J.
    Zhang, Wei-Xian
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (11) : 4288 - 4294
  • [34] Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application
    Li, Shaolin
    Wang, Wei
    Liang, Feipeng
    Zhang, Wei-Xian
    JOURNAL OF HAZARDOUS MATERIALS, 2017, 322 : 163 - 171
  • [35] Feasibility of nanoscale zero-valent iron (nZVI) for enhanced biological treatment of organic dyes
    Liu, Jing
    Liu, Airong
    Wang, Wei
    Li, Ruofan
    Zhang, Wei-xian
    CHEMOSPHERE, 2019, 237
  • [36] Stabilization of nanoscale zero-valent iron in water with mesoporous carbon (nZVI@MC)
    Shi, Junming
    Wang, Jing
    Wang, Wei
    Teng, Wei
    Zhang, Wei-xian
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2019, 81 : 28 - 33
  • [37] Characterization of the uptake of aqueous Ni2+ ions on nanoparticles of zero-valent iron (nZVI)
    Efecan, Nazli
    Shahwan, Talal
    Eroglu, Ahmet E.
    Lieberwirth, Ingo
    DESALINATION, 2009, 249 (03) : 1048 - 1054
  • [38] Performance and mechanism of Cr(VI) removal by resin-supported nanoscale zero-valent iron (nZVI): role of nZVI distribution
    Wang, Yuan
    Song, Yaqin
    Shi, Chenfei
    Shang, Jingge
    Chen, Jianqiu
    Du, Qiong
    DESALINATION AND WATER TREATMENT, 2019, 166 : 344 - 352
  • [39] Nanoscale zero-valent iron (nZVI) encapsulated within tubular nitride carbon for highly selective and stable electrocatalytic denitrification
    Wang, Jing
    Deng, Zilong
    Feng, Tao
    Fan, Jianwei
    Zhang, Wei-xian
    CHEMICAL ENGINEERING JOURNAL, 2021, 417
  • [40] Activation of Persulfate by Nanosized Zero-Valent Iron (NZVI): Mechanisms and Transformation Products of NZVI
    Kim, Cheolyong
    Ahn, Jun-Young
    Kim, Tae Yoo
    Shin, Won Sik
    Hwang, Inseong
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2018, 52 (06) : 3625 - 3633