Inverses, determinants, eigenvalues, and eigenvectors of real symmetric Toeplitz matrices with linearly increasing entries

被引:9
|
作者
Buenger, F. [1 ]
机构
[1] Hamburg Univ Technol, Inst Reliable Comp, D-21073 Hamburg, Germany
关键词
Toeplitz matrix; Inverse; Determinant; Eigenvalue; Eigenvector;
D O I
10.1016/j.laa.2014.07.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We explicitly determine the skew-symmetric eigenvectors and corresponding eigenvalues of the real symmetric Toeplitz matrices T = T(a, b, n) := (a + b vertical bar j - k vertical bar)(1 <= j,k <= n) of order n >= 3 where a, b is an element of R, b not equal 0. The matrix T is singular if and only if c := a/b = -n-1/2. In this case we also explicitly determine the symmetric eigenvectors and corresponding eigenvalues of T. If T is regular, we explicitly compute the inverse T-1, the determinant det T, and the symmetric eigenvectors and corresponding eigenvalues of T are described in terms of the roots of the real self-inversive polynomial p(n)(delta; z) := (z(n+1) - delta z(n) - delta z + 1)/(z + 1) if n is even, and p(n)(delta; z) := z(n+1) - delta z(n) - delta z + 1 if n is odd, delta := 1 + 2/(2c + n - 1). (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:595 / 619
页数:25
相关论文
共 32 条
  • [11] Entries of the inverses of large positive definite Toeplitz matrices
    Boettcher, Albrecht
    ACTA SCIENTIARUM MATHEMATICARUM, 2022,
  • [12] Entries of the inverses of large positive definite Toeplitz matrices
    Albrecht Böttcher
    Acta Scientiarum Mathematicarum, 2022, 88 : 85 - 99
  • [13] Entries of the inverses of large positive definite Toeplitz matrices
    Boettcher, Albrecht
    ACTA SCIENTIARUM MATHEMATICARUM, 2022, 88 (1-2): : 85 - 99
  • [14] DETERMINANTS, INVERSES AND EIGENVALUES OF TWO SYMMETRIC POSITIVE DEFINITE MATRICES WITH PELL AND PELL-LUCAS NUMBERS
    Wang, Shuo
    Jiang, Zhaolin
    Zheng, Yanpeng
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2020, 22 (02): : 83 - 95
  • [15] Determinants and inverses of perturbed periodic tridiagonal Toeplitz matrices
    Yunlan Wei
    Xiaoyu Jiang
    Zhaolin Jiang
    Sugoog Shon
    Advances in Difference Equations, 2019
  • [16] Determinants and inverses of perturbed periodic tridiagonal Toeplitz matrices
    Wei, Yunlan
    Jiang, Xiaoyu
    Jiang, Zhaolin
    Shon, Sugoog
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [17] Eigenvalues and eigenvectors of banded Toeplitz matrices and the related symbols
    Ekstrom, S. -E.
    Serra-Capizzano, S.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2018, 25 (05)
  • [18] On determinants and inverses of some triband Toeplitz matrices with permuted columns
    Li, Pingyun
    Jiang, Zhaolin
    Zheng, Yanpeng
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2020, 20 (03): : 196 - 206
  • [19] Asymptotics of eigenvalues of symmetric Toeplitz band matrices
    Batalshchikov, A. A.
    Grudsky, S. M.
    Stukopin, V. A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 469 : 464 - 486
  • [20] Another neural network based approach for computing eigenvalues and eigenvectors of real skew-symmetric matrices
    Tang, Ying
    Li, Jianping
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (05) : 1385 - 1392