Inverses, determinants, eigenvalues, and eigenvectors of real symmetric Toeplitz matrices with linearly increasing entries

被引:9
作者
Buenger, F. [1 ]
机构
[1] Hamburg Univ Technol, Inst Reliable Comp, D-21073 Hamburg, Germany
关键词
Toeplitz matrix; Inverse; Determinant; Eigenvalue; Eigenvector;
D O I
10.1016/j.laa.2014.07.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We explicitly determine the skew-symmetric eigenvectors and corresponding eigenvalues of the real symmetric Toeplitz matrices T = T(a, b, n) := (a + b vertical bar j - k vertical bar)(1 <= j,k <= n) of order n >= 3 where a, b is an element of R, b not equal 0. The matrix T is singular if and only if c := a/b = -n-1/2. In this case we also explicitly determine the symmetric eigenvectors and corresponding eigenvalues of T. If T is regular, we explicitly compute the inverse T-1, the determinant det T, and the symmetric eigenvectors and corresponding eigenvalues of T are described in terms of the roots of the real self-inversive polynomial p(n)(delta; z) := (z(n+1) - delta z(n) - delta z + 1)/(z + 1) if n is even, and p(n)(delta; z) := z(n+1) - delta z(n) - delta z + 1 if n is odd, delta := 1 + 2/(2c + n - 1). (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:595 / 619
页数:25
相关论文
共 19 条
[1]  
[Anonymous], 1982, Hankel and Toeplitz Matrices and Forms
[2]   Eigenvalues of Hermitian Toeplitz matrices with polynomially increasing entries [J].
Bogoya, J. M. ;
Boettcher, A. ;
Grudsky, S. M. .
JOURNAL OF SPECTRAL THEORY, 2012, 2 (03) :267-292
[3]   EIGENVALUES AND EIGENVECTORS OF SYMMETRIC CENTROSYMMETRIC MATRICES [J].
CANTONI, A ;
BUTLER, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1976, 13 (03) :275-288
[4]   PARAMETRIC TOEPLITZ-SYSTEMS [J].
DELSARTE, P ;
GENIN, Y ;
KAMP, Y .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 1984, 3 (02) :207-223
[5]  
Delsarte Philippe., 1984, Mathematical Theory of Networks and Systems, P194
[6]  
Fonseca C.M., 2007, Appl. Math. Sci, V1, P59
[7]  
Golub G. H., 1996, MATRIX COMPUTATIONS
[8]  
Gregory R.T., 1969, A Collection of Matrices for Testing Computational Algorithm
[9]   SINUSOIDAL FAMILY OF UNITARY TRANSFORMS [J].
JAIN, AK .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1979, 1 (04) :356-365
[10]  
Kouachi S, 2006, ELECTRON J LINEAR AL, V15, P115