A Carleman estimate for infinite cylindrical quantum domains and the application to inverse problems

被引:21
作者
Kian, Yavar [1 ,2 ]
Phan, Quang Sang [3 ]
Soccorsi, Eric [1 ,2 ]
机构
[1] Univ Aix Marseille, CPT, CNRS, UMR 7332, F-13288 Marseille, France
[2] Univ Toulon & Var, F-83957 La Garde, France
[3] Jagiellonian Univ, Inst Math, Fac Math & Comp Sci, PL-30348 Krakow, Poland
关键词
inverse problem; Schrodinger equation; Carleman estimate; scalar potential; infinite cylindrical domain; LIPSCHITZ STABILITY; UNIQUENESS; COEFFICIENTS; EQUATIONS;
D O I
10.1088/0266-5611/30/5/055016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the inverse problem of determining the time-independent scalar potential q of the dynamic Schrodinger equation in an infinite cylindrical domain Omega, from one Neumann boundary observation of the solution. Assuming that q is known outside some fixed compact subset of Omega, we prove that q may be Lipschitz stably retrieved by choosing the Dirichlet boundary condition of the system suitably. Since the proof is by means of a global Carleman estimate designed specifically for the Schrodinger operator acting in an unbounded cylindrical domain, the measurement of the Neumann data is performed on an infinitely extended subboundary of the cylinder.
引用
收藏
页数:16
相关论文
共 28 条
  • [1] Albano P., 2000, Electronic Journal of Differential Equations, V2000, P1
  • [2] SHARP SUFFICIENT CONDITIONS FOR THE OBSERVATION, CONTROL, AND STABILIZATION OF WAVES FROM THE BOUNDARY
    BARDOS, C
    LEBEAU, G
    RAUCH, J
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1992, 30 (05) : 1024 - 1065
  • [3] Uniqueness and stability in an inverse problem for the Schrodinger equation
    Baudouin, L
    Puel, JP
    [J]. INVERSE PROBLEMS, 2002, 18 (06) : 1537 - 1554
  • [4] Bellassoued M., 2004, APPL ANAL, V83, P983
  • [5] Lipschitz stability in determining density and two Lame coefficients
    Bellassoued, Mourad
    Yamamoto, Masahiro
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 329 (02) : 1240 - 1259
  • [6] Inverse boundary value problem for the dynamical heterogeneous Maxwell's system
    Bellassoued, Mourad
    Cristofol, Michel
    Soccorsi, Eric
    [J]. INVERSE PROBLEMS, 2012, 28 (09)
  • [7] Logarithmic stability in the dynamical inverse problem for the Schrodinger equation by arbitrary boundary observation
    Bellassoued, Mourad
    Choulli, Mourad
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 91 (03): : 233 - 255
  • [8] Bukhgeim A L., 1981, Soviet Mathematics Doklady, V24, P244
  • [9] Recovering a potential from partial Cauchy data
    Bukhgeim, AL
    Uhlmann, G
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (3-4) : 653 - 668
  • [10] Inverse problem for the Schrodinger operator in an unbounded strip
    Cardoulis, L.
    Cristofol, M.
    Gaitan, P.
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2008, 16 (02): : 127 - 146