Controllable synthesis of N-C@LiFePO4 nanospheres as advanced cathode of lithium ion batteries

被引:89
作者
Xiong, Q. Q. [1 ]
Lou, J. J. [1 ]
Teng, X. J. [1 ]
Lu, X. X. [1 ]
Liu, S. Y. [2 ]
Chi, H. Z. [1 ]
Ji, Z. G. [1 ]
机构
[1] Hangzhou Dianzi Univ, Coll Mat & Environm Engn, Hangzhou 310018, Zhejiang, Peoples R China
[2] Global Energy Interconnect Res Inst Co Ltd, State Key Lab Adv Transmiss Technol, Beijing 102211, Peoples R China
关键词
LiFePO4; Nitrogen doping; Nanospheres; Lithium ion batteries; Electrochemical energy storage; ELECTROCHEMICAL PERFORMANCE; ANODE MATERIALS; LIFEPO4; NITROGEN; GRAPHENE; SHELL; ARRAYS; SIZE; MICROSPHERES; ACID;
D O I
10.1016/j.jallcom.2018.01.350
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Exploring advanced cathode materials is critical for the development of large-scale lithium ion storage. Herein we report nitrogen-doped carbon (N-C) coated LiFePO4 nanospheres (N-C@LFP) synthesized by a facile hydrothermal plus chemical polymerization method. N-C@LFP nanospsheres exhibit diameters of 400-700 nm and show core-shell structure with a thin N-C layer of similar to 2.5 nm. As a cathode for lithium ion batteries (LIBs), N-C@LFP nanospheres present excellent electrochemical performance with higher electrochemical reactivity, better reversibility and smaller polarization as compared to the unmodified pristine LiFePO4 nanospheres. The N-C@LFP electrode delivers superior specific capacity of 158.4 mAh g(_1) after 200 cycles at 1 C and good rate capability (107.5 mAh g(-1) at 30 C). The enhanced electrochemical performance is attributed to the conductive N-C layer coating with fast ion/electron transfer. The N-C@LFP nanospheres are thus promising for commercial application in high-energy & power LIBs. (c) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:377 / 382
页数:6
相关论文
共 30 条
[1]   Investigating the low-temperature impedance increase of lithium-ion cells [J].
Abraham, D. P. ;
Heaton, J. R. ;
Kang, S. -H. ;
Dees, D. W. ;
Jansen, A. N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (01) :A41-A47
[2]   Enhanced low temperature electrochemical performances of LiFePO4/C by surface modification with Ti3SiC2 [J].
Cai, Guanglan ;
Guo, Ruisong ;
Liu, Li ;
Yang, Yuexia ;
Zhang, Chao ;
Wu, Chen ;
Guo, Weina ;
Jiang, Hong .
JOURNAL OF POWER SOURCES, 2015, 288 :136-144
[3]   Size effects on carbon-free LiFePO4 powders [J].
Delacourt, C. ;
Poizot, P. ;
Levasseur, S. ;
Masquelier, C. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (07) :A352-A355
[4]   Fast microwave synthesis of SnO2@graphene/N-doped carbons as anode materials in sodium ion batteries [J].
Dursun, Burcu ;
Topac, Erdal ;
Alibeyli, Rafig ;
Ata, Ali ;
Ozturk, Osman ;
Demir-Cakan, Rezan .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 728 :1305-1314
[5]   XPS photoemission in carbonaceous materials: A "defect" peak beside the graphitic asymmetric peak [J].
Estrade-Szwarckopf, H .
CARBON, 2004, 42 (8-9) :1713-1721
[6]   Synthesis of F-doped LiFePO4/C cathode materials for high performance lithium-ion batteries using co-precipitation method with hydrofluoric acid source [J].
Gao, Chao ;
Zhou, Jian ;
Liu, Guizhen ;
Wang, Lin .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 727 :501-513
[7]   Effects of organic phosphorus acid on the core-shell structure and electrochemical properties of LiFePO4 uniformly wrapped with in-situ growed graphene nanosheets [J].
He, Liping ;
Zha, Wenke ;
Chen, Dachuan .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 727 :948-955
[8]   In-situ growth of graphene decorations for high-performance LiFePO4 cathode through solid-state reaction [J].
Li, Jing ;
Zhang, Li ;
Zhang, Longfei ;
Hao, Weiwei ;
Wang, Haibo ;
Qu, Qunting ;
Zheng, Honghe .
JOURNAL OF POWER SOURCES, 2014, 249 :311-319
[9]   Pyrolysis-induced synthesis of iron and nitrogen-containing carbon nanolayers modified graphdiyne nanostructure as a promising core-shell electrocatalyst for oxygen reduction reaction [J].
Li, Yanrong ;
Guo, Chaozhong ;
Li, Jiaqiang ;
Liao, Wenli ;
Li, Zhongbin ;
Zhang, Jin ;
Chen, Changguo .
CARBON, 2017, 119 :201-210
[10]  
Lin DC, 2017, NAT NANOTECHNOL, V12, P194, DOI [10.1038/nnano.2017.16, 10.1038/NNANO.2017.16]