Lower bounds for decision problems in imaginary, norm-Euclidean quadratic integer rings

被引:0
作者
Busch, J. [1 ]
机构
[1] Archer Sch Girls, Dept Math, Los Angeles, CA 90049 USA
基金
美国国家科学基金会;
关键词
Arithmetic complexity; Computational complexity; Coprimality; Eisenstein integers; Gaussian integers; gcd; Lower bounds; ALGORITHM; GCD; COMPUTATIONS;
D O I
10.1016/j.jsc.2008.11.001
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove lower bounds for the complexity of deciding several relations in imaginary, norm-Euclidean quadratic integer rings, where computations are assumed to be relative to a basis of piecewise-linear operations. In particular, we establish lower bounds for deciding coprimality in these rings, which yield lower bounds for gcd computations. In each imaginary, norm-Euclidean quadratic integer ring, a known binary-like gcd algorithm has complexity that is quadratic in our lower bound. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:683 / 699
页数:17
相关论文
共 15 条
  • [1] Agarwal S, 2004, LECT NOTES COMPUT SC, V3076, P57
  • [2] Busch J, 2007, FUND INFORM, V76, P1
  • [3] BUSCH J, 2008, THESIS U CALIFORNIA
  • [4] Discrete Logarithms in GF(p)
    Coppersmith, Don
    Odlzyko, Andrew M.
    Schroeppel, Richard
    [J]. ALGORITHMICA, 1986, 1 (1-4) : 1 - 15
  • [5] Efficient algorithms for the gcd and cubic residuosity in the ring of Eisenstein integers
    Damgård, IB
    Frandsen, GS
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2005, 39 (06) : 643 - 652
  • [6] Lamacchia B. A., 1991, Designs, Codes and Cryptography, V1, P47, DOI 10.1007/BF00123958
  • [7] A LOWER BOUND FOR INTEGER GREATEST COMMON DIVISOR COMPUTATIONS
    MANSOUR, Y
    SCHIEBER, B
    TIWARI, P
    [J]. JOURNAL OF THE ACM, 1991, 38 (02) : 453 - 471
  • [8] LOWER BOUNDS FOR COMPUTATIONS WITH THE FLOOR OPERATION
    MANSOUR, Y
    SCHIEBER, B
    TIWARI, P
    [J]. SIAM JOURNAL ON COMPUTING, 1991, 20 (02) : 315 - 327
  • [9] LOWER BOUNDS FOR ARITHMETIC PROBLEMS
    MEIDANIS, J
    [J]. INFORMATION PROCESSING LETTERS, 1991, 38 (02) : 83 - 87
  • [10] Moschovakis YN, 2005, LECT NOTES COMPUT SC, V3526, P350