Turbulence in the interstellar medium

被引:54
作者
Falceta-Goncalves, D. [1 ,2 ]
Kowal, G. [2 ]
Falgarone, E. [3 ,4 ]
Chian, A. C. -L. [5 ,6 ,7 ,8 ]
机构
[1] Univ St Andrews, SUPA, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland
[2] Univ Sao Paulo, Escola Artes Ciencias Humanidades, BR-03828000 Sao Paulo, Brazil
[3] Ecole Normale Super, CNRS, LERMA LRA, F-75231 Paris, France
[4] Observ Paris, F-75231 Paris, France
[5] Observ Paris, CNRS, LESIA, F-92190 Meudon, France
[6] Natl Inst Space Res INPE, BR-12227010 Sao Jose Dos Campos, SP, Brazil
[7] WISER, BR-12227010 Sao Jose Dos Campos, SP, Brazil
[8] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
基金
欧洲研究理事会; 巴西圣保罗研究基金会;
关键词
COMPRESSIBLE MAGNETOHYDRODYNAMIC TURBULENCE; MAGNETIC-FIELD TURBULENCE; UNIVERSAL SCALING LAWS; STAR-FORMATION; POWER SPECTRUM; H2O MASERS; RELATIVE DISPERSION; ZEEMAN MEASUREMENTS; NEUTRAL HYDROGEN; MHD TURBULENCE;
D O I
10.5194/npg-21-587-2014
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Turbulence is ubiquitous in the insterstellar medium and plays a major role in several processes such as the formation of dense structures and stars, the stability of molecular clouds, the amplification of magnetic fields, and the re-acceleration and diffusion of cosmic rays. Despite its importance, interstellar turbulence, like turbulence in general, is far from being fully understood. In this review we present the basics of turbulence physics, focusing on the statistics of its structure and energy cascade. We explore the physics of compressible and incompressible turbulent flows, as well as magnetised cases. The most relevant observational techniques that provide quantitative insights into interstellar turbulence are also presented. We also discuss the main difficulties in developing a three-dimensional view of interstellar turbulence from these observations. Finally, we briefly present what the main sources of turbulence in the interstellar medium could be.
引用
收藏
页码:587 / 604
页数:18
相关论文
共 179 条
[1]   Nonlocal phenomenology for anisotropic magnetohydrodynamic turbulence [J].
Alexakis, A. .
ASTROPHYSICAL JOURNAL, 2007, 667 (01) :L93-L96
[2]   Large-Scale Magnetic Fields in Magnetohydrodynamic Turbulence [J].
Alexakis, Alexandros .
PHYSICAL REVIEW LETTERS, 2013, 110 (08)
[3]   Spectra and anisotropy of magnetic fluctuations in the Earth's magnetosheath: Cluster observations [J].
Alexandrova, O. ;
Lacombe, C. ;
Mangeney, A. .
ANNALES GEOPHYSICAE, 2008, 26 (11) :3585-3596
[4]  
Aluie H., 2009, PHYS FLUIDS, V21
[5]   The magnetic field of IRAS 16293-2422 as traced by shock-induced H2O masers [J].
Alves, F. O. ;
Vlemmings, W. H. T. ;
Girart, J. M. ;
Torrelles, J. M. .
ASTRONOMY & ASTROPHYSICS, 2012, 542
[6]  
[Anonymous], 1922, Q. J. R. Meteorolog. Soc.
[7]  
[Anonymous], 1964, Soviet Astronomy
[8]   ELECTRON-DENSITY POWER SPECTRUM IN THE LOCAL INTERSTELLAR-MEDIUM [J].
ARMSTRONG, JW ;
RICKETT, BJ ;
SPANGLER, SR .
ASTROPHYSICAL JOURNAL, 1995, 443 (01) :209-221
[9]   Thermal condensation in a turbulent atomic hydrogen flow [J].
Audit, E ;
Hennebelle, P .
ASTRONOMY & ASTROPHYSICS, 2005, 433 (01) :1-U20
[10]   Magnetic Fluctuation Power Near Proton Temperature Anisotropy Instability Thresholds in the Solar Wind [J].
Bale, S. D. ;
Kasper, J. C. ;
Howes, G. G. ;
Quataert, E. ;
Salem, C. ;
Sundkvist, D. .
PHYSICAL REVIEW LETTERS, 2009, 103 (21)