Equilibrium and dynamic design principles for binding molecules engineered for reagentless biosensors

被引:6
作者
de Picciotto, Seymour [1 ]
Imperiali, Barbara [2 ,3 ]
Griffith, Linda G. [1 ,4 ]
Wittrup, K. Dane [1 ,4 ]
机构
[1] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Biol, Cambridge, MA 02139 USA
[3] MIT, Dept Chem, Cambridge, MA 02139 USA
[4] MIT, Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA
关键词
Reagentless biosensor; Dynamic analysis; Antibody immunoassay; Detection; KNOWLEDGE-BASED DESIGN; FLUORESCENT BIOSENSORS; SPATIAL RANGE; PROTEIN; ASSOCIATION; SENSORS; KINETICS;
D O I
10.1016/j.ab.2014.04.036
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Reagentless biosensors rely on the interaction of a binding partner and its target to generate a change in fluorescent signal using an environment-sensitive fluorophore or Forster resonance energy transfer. Binding affinity can exert a significant influence on both the equilibrium and the dynamic response characteristics of such a biosensor. We here develop a kinetic model for the dynamic performance of a reagentless biosensor. Using a sinusoidal signal for ligand concentration, our findings suggest that it is optimal to use a binding moiety whose equilibrium dissociation constant matches that of the average predicted input signal, while maximizing both the association rate constant and the dissociation rate constant at the necessary ratio to create the desired equilibrium constant. Although practical limitations constrain the attainment of these objectives, the derivation of these design principles provides guidance for improved reagentless biosensor performance and metrics for quality standards in the development of biosensors. These concepts are broadly relevant to reagentless biosensor modalities. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:9 / 15
页数:7
相关论文
共 38 条
[1]   "Quenchbodies": Quench-Based Antibody Probes That Show Antigen-Dependent Fluorescence [J].
Abe, Ryoji ;
Ohashi, Hiroyuki ;
Iijima, Issei ;
Ihara, Masaki ;
Takagi, Hiroaki ;
Hohsaka, Takahiro ;
Ueda, Hiroshi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (43) :17386-17394
[2]  
[Anonymous], 1990, CHEM KINETICS STUDY
[3]  
Bode H. W., 1945, NETWORK ANAL FEEDBAC
[4]   Knowledge-based design of reagentless fluorescent biosensors from a designed ankyrin repeat protein [J].
Brient-Litzler, Elodie ;
Plueckthun, Andreas ;
Bedouelle, Hugues .
PROTEIN ENGINEERING DESIGN & SELECTION, 2010, 23 (04) :229-241
[5]  
Chen L., 2010, MOD BIOM NETW CELLS
[6]   A peptide-based fluorescent ratiometric sensor for quantitative detection of proteins [J].
Choulier, Laurence ;
Shvadchak, Volodymyr V. ;
Naidoo, Aletia ;
Klymchenko, Andrey S. ;
Mely, Yves ;
Altschuh, Daniele .
ANALYTICAL BIOCHEMISTRY, 2010, 401 (02) :188-195
[7]   Affinity regulates spatial range of EGF receptor autocrine ligand binding [J].
DeWitt, A ;
Iida, T ;
Lam, HY ;
Hill, V ;
Wiley, HS ;
Lauffenburger, DA .
DEVELOPMENTAL BIOLOGY, 2002, 250 (02) :305-316
[8]  
DeWitt AE, 2001, J CELL SCI, V114, P2301
[9]   Yeast surface display for protein engineering and characterization [J].
Gai, S. Annie ;
Wittrup, K. Dane .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2007, 17 (04) :467-473
[10]   Development of a fluorogenic sensor for activated Cdc42 [J].
Goguen, Brenda N. ;
Loving, Galen S. ;
Imperiali, Barbara .
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2011, 21 (17) :5058-5061