Yb3Cu6Sn5, Yb5Cu11Sn8 and Yb3Cu8Sn4:: crystal structure of three ordered compounds

被引:27
作者
Fornasini, ML
Manfrinetti, P
Mazzone, D
Riani, P
Zanicchi, G
机构
[1] Univ Genoa, Dipartimento Chim & Chim Ind, Sez Chim Fis, I-16146 Genoa, Italy
[2] Univ Genoa, INFM, I-16146 Genoa, Italy
[3] Univ Genoa, INSTM, I-16146 Genoa, Italy
关键词
intermetallics; crystal structure; ytterbium; copper; tin;
D O I
10.1016/j.jssc.2004.02.007
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Yb3Cu6Sn5, Yb5Cu11Sn8 and Yb3Cu8Sn4 compounds were prepared in sealed Ta crucibles by induction melting and subsequent annealing. The crystal structures of Yb3Cu6Sn5 and Yb5Cu11Sn8 were determined from single crystal diffractometer data: Yb3Cu6Sn5, isotypic with Dy3Co6Sn5, orthorhombic, Immm, oI28, a = 4.365(l) Angstrom, b = 9.834(3)Angstrom, c = 12.827(3) Angstrom, Z = 2, R = 0.019: 490 independent reflections, 28 parameters; Yb5Cu11Sn8 with its own structure, orthorhombic, Pmmn, oP48, a = 4.4267(6) Angstrom, b = 22.657(8) Angstrom, c = 9.321(4) Angstrom, Z = 2. R = 0.047, 1553 independent reflections, 78 parameters. Both compounds belong to the BaAl4-derived defective structures, and are closely related to Ce3Pd6Sb5 (oP28, Pmmn). The crystal structure of Yb3Cu8Sn4, isotypic with Nd3Co8Sn4, was refined from powder data by the Rietveld method: hexagonal, P6(3)mc, hP30, a = 9.080(1) Angstrom, c = 7.685(1) Angstrom, Z = 2: R-wp = 0.040. It is an ordered substitution derivative of the BaLi4 type (hP30, P6(3)/mmc). All compounds show strong Cu-Sn bonds with a length reaching 2.553(3) Angstrom in Yb5Cu11Sn8. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:1919 / 1924
页数:6
相关论文
共 50 条
  • [1] Magnetic Properties of RE3Pd6Sb5 (RE = Pr, Nd, Gd) and a Group-Subgroup Scheme for Ce3Pd6Sb5 and Yb5Cu11Sn8
    Schellenberg, Inga
    Hoffmann, Rolf-Dieter
    Seidel, Stefan
    Schwickert, Christian
    Poettgen, Rainer
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES, 2011, 66 (10): : 985 - 992
  • [2] Crystal structure of triytterbium pentastannide, Sn5Yb3
    Ge, Ming-Hui
    Corbett, John D.
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE-NEW CRYSTAL STRUCTURES, 2011, 226 (04): : 445 - 446
  • [3] Anisotropic thermal expansion of Ni3Sn4, Ag3Sn, Cu3Sn, Cu6Sn5 and βSn
    Xian, J. W.
    Zeng, G.
    Belyakov, S. A.
    Gu, Q.
    Nogita, K.
    Gourlay, C. M.
    INTERMETALLICS, 2017, 91 : 50 - 64
  • [4] The orientation relationships of the Cu3Sn/Cu interfaces and a discussion of the formation sequence of Cu3Sn and Cu6Sn5
    Wang, Kuang-Kuo
    Gan, Dershin
    Hsieh, Ker-Chang
    THIN SOLID FILMS, 2014, 562 : 398 - 404
  • [5] A numerical method to determine interdiffusion coefficients of Cu6Sn5 and Cu3Sn intermetallic compounds
    Li, J. F.
    Agyakwa, P. A.
    Johnson, C. M.
    INTERMETALLICS, 2013, 40 : 50 - 59
  • [6] An ordered structure of Cu3Sn in Cu-Sn alloy investigated by transmission electron microscopy
    Sang, Mahan
    Du, Kui
    Ye, Hengqiang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 469 (1-2) : 129 - 136
  • [7] SELF-DIFFUSION OF CU AND SN IN SINGLE-CRYSTAL CU3SN ORDERED ALLOYS
    ARITA, M
    NAKAJIMA, H
    KOIWA, M
    MIURA, S
    MATERIALS TRANSACTIONS JIM, 1991, 32 (01): : 32 - 36
  • [8] Effect of ni on the formation of Cu6Sn5 and Cu3Sn intermetallics
    Yu, Hao
    Vuorinen, Vesa
    Kivilahti, Jonna
    IEEE TRANSACTIONS ON ELECTRONICS PACKAGING MANUFACTURING, 2007, 30 (04): : 293 - 298
  • [9] Studies of Cu-Sn interdiffusion coefficients in Cu3Sn and Cu6Sn5 based on the growth kinetics
    Wang, Yue
    Peng, Xianwen
    Huang, Jihua
    Ye, Zheng
    Yang, Jian
    Chen, Shuhai
    SCRIPTA MATERIALIA, 2021, 204
  • [10] Enthalpies of Formation of (Cu,Ni)3Sn, (Cu,Ni)6Sn5-HT and (Ni,Cu)3Sn2-HT
    Schmetterer, C.
    Rodriguez-Hortala, M.
    Flandorfer, H.
    JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION, 2014, 35 (04) : 429 - 433