Hyperspectral Unmixing with Spectral Variability Using Endmember Guided Probabilistic Generative Deep Learning

被引:5
作者
Lyngdoh, Rosly B. [1 ]
Dave, Rucha [2 ]
Anand, S. S. [1 ]
Ahmad, Touseef [1 ]
Misra, Arundhati [1 ]
机构
[1] Space Applicat Ctr ISRO Ahmedabad, Ahmadabad 380015, Gujarat, India
[2] Anand Agr Univ, Anand 388110, Gujarat, India
来源
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022) | 2022年
关键词
Hyperspectral Image; AVIRIS-NG; Red Soil; Black Soil; Variational autoencoder; Unmixing; AUTOENCODER;
D O I
10.1109/IGARSS46834.2022.9884522
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Spectral signatures of the pure constituent materials vary across the hyperspectral image (HSI) due to variable illumination, atmospheric conditions, and intrinsic variability. Using a single endmember to represent the target material (or endmember) with high spectral variability will lead to errors in estimating abundance. Therefore, we propose a probabilistic generative network (PGM-Net) architecture to learn the spectral variability from the HSI (hereinafter referred to as endmember-guided-probabilistic-model-network, EGPGM-Net). The PGMNet is guided by endmember-network (E-Net) using the parameter sharing strategy. Experimental analysis was carried out on benchmark datasets to compare the performance of the proposed method with the state-of-the-art methods. Moreover, we have also demonstrated the application of EGPGM-Net for estimating the abundance of red and black soil over sparsely vegetated areas using airborne-visible-and-infrared-imaging-spectrometer-next-generation (AVIRIS-NG) sensor. The quantitative analysis reveals that the proposed method consistently achieves a better unmixing performance than other linear-mixing and deep learning based models in terms of spectral-angle-distance (SAD) and abunance-root-mean-square error (aRMSE). The proposed semi-supervised approach accurately delineated the abundances of red soil, black soil, crop residue, built-up areas and bituminous roads.
引用
收藏
页码:1768 / 1771
页数:4
相关论文
共 15 条
[1]   Four-directional spatial regularization for sparse hyperspectral unmixing [J].
Ahmad, Touseef ;
Lyngdoh, Rosly Boy ;
Sahadevan, Anand S. ;
Raha, Soumyendu ;
Gupta, Praveen Kumar ;
Misra, Arundhati .
JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (04)
[2]   Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Dobigeon, Nicolas ;
Parente, Mario ;
Du, Qian ;
Gader, Paul ;
Chanussot, Jocelyn .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) :354-379
[3]  
Borsoi R. A., 2020, ARXIV200107307
[4]  
Comon P, 2010, HANDBOOK OF BLIND SOURCE SEPARATION: INDEPENDENT COMPONENT ANALYSIS AND APPLICATIONS, P1
[5]   Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery [J].
Heinz, DC ;
Chang, CI .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (03) :529-545
[6]   Endmember-Guided Unmixing Network (EGU-Net): A General Deep Learning Framework for Self-Supervised Hyperspectral Unmixing [J].
Hong, Danfeng ;
Gao, Lianru ;
Yao, Jing ;
Yokoya, Naoto ;
Chanussot, Jocelyn ;
Heiden, Uta ;
Zhang, Bing .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (11) :6518-6531
[7]   Sparse Unmixing of Hyperspectral Data [J].
Iordache, Marian-Daniel ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (06) :2014-2039
[8]  
Kingma D. P., 2014, 2 INT C LEARNING REP, V1050, P10
[9]   A Signal Processing Perspective on Hyperspectral Unmixing [J].
Ma, Wing-Kin ;
Bioucas-Dias, Jose M. ;
Chan, Tsung-Han ;
Gillis, Nicolas ;
Gader, Paul ;
Plaza, Antonio J. ;
Ambikapathi, ArulMurugan ;
Chi, Chong-Yung .
IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (01) :67-81
[10]   Vertex component analysis: A fast algorithm to unmix hyperspectral data [J].
Nascimento, JMP ;
Dias, JMB .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (04) :898-910