Optimization-Based Approaches for Maximizing Aggregate Recommendation Diversity

被引:57
作者
Adomavicius, Gediminas [1 ]
Kwon, YoungOk [2 ]
机构
[1] Univ Minnesota, Carlson Sch Management, Dept Informat Decis Sci, Minneapolis, MN 55455 USA
[2] Sookmyung Womens Univ, Div Business Adm, Seoul 140742, South Korea
基金
美国国家科学基金会;
关键词
recommender systems; recommendation diversity; recommendation accuracy; collaborative filtering; optimization techniques; PRODUCT VARIETY; LONG TAIL; SYSTEMS;
D O I
10.1287/ijoc.2013.0570
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Recommender systems are being used to help users find relevant items from a large set of alternatives in many online applications. Most existing recommendation techniques have focused on improving recommendation accuracy; however, diversity of recommendations has also been increasingly recognized in research literature as an important aspect of recommendation quality. This paper proposes several optimization-based approaches for improving aggregate diversity of top-N recommendations, including a greedy maximization heuristic, a graph-theoretic approach based on maximum flow or maximum bipartite matching computations, and an integer programming approach. The proposed approaches are evaluated using real-world movie rating data sets and demonstrate substantial improvements in both diversity and accuracy as compared to the recommendation reranking approaches, which have been introduced in prior literature for the purposes of diversity improvement and were used for baseline comparisons in our study. The paper also discusses the computational complexity and the scalability of the proposed approaches, as well as the potential directions for future work.
引用
收藏
页码:351 / 369
页数:19
相关论文
共 44 条
[1]   Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions [J].
Adomavicius, G ;
Tuzhilin, A .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2005, 17 (06) :734-749
[2]   Improving Aggregate Recommendation Diversity Using Ranking-Based Techniques [J].
Adomavicius, Gediminas ;
Kwon, YoungOk .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2012, 24 (05) :896-911
[3]  
Ahuja R., 1993, NETWORK FLOWS THEORY
[4]  
Anderson C., 2006, LONG TAIL
[5]  
[Anonymous], 2009, P 19 WORKSH INF TECH
[6]  
[Anonymous], 1999, Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, DOI DOI 10.1145/312129.312230
[7]   Fab: Content-based, collaborative recommendation [J].
Balabanovic, M ;
Shoham, Y .
COMMUNICATIONS OF THE ACM, 1997, 40 (03) :66-72
[8]  
Bradley K., 2001, 12 IR C ART INT COGN, P85
[9]  
Breese J. S., 2013, P 14 C UNC ART INT
[10]   Consumer surplus in the digital economy: Estimating the value of increased product variety at Online booksellers [J].
Brynjolfsson, E ;
Hu, Y ;
Smith, MD .
MANAGEMENT SCIENCE, 2003, 49 (11) :1580-1596