Ulam Type Stability of A-Quadratic Mappings in Fuzzy Modular *-Algebras

被引:0
作者
Kim, Hark-Mahn [1 ]
Shin, Hwan-Yong [1 ]
机构
[1] Chungnam Natl Univ, Dept Math, 99 Daehangno, Daejeon 34134, South Korea
关键词
fuzzy modular *-algebras; modular *-algebras; A-quadratic derivation; Delta(2)-condition; beta-homogeneous property; FUNCTIONAL-EQUATIONS;
D O I
10.3390/math8091630
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we find the solution of the following quadratic functional equation n Sigma(1 <= i <= j <= n) Q(x(i) - x(j)) = Sigma(n)(i=1) Q (Sigma(j not equal i) x(j) - (n - 1)x(i)), which is derived from the gravity of the n distinct vectors x(1), ... , x(n) in an inner product space, and prove that the stability results of the A-quadratic mappings in m-complete convex fuzzy modular *-algebras without using lower semicontinuity and beta-homogeneous property.
引用
收藏
页数:13
相关论文
共 27 条
[1]  
ALANAZI AM, 2020, MATHEMATICS BASEL, DOI DOI 10.3390/MATH8071050
[2]   A general functional equation and its stability [J].
Baker, JA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (06) :1657-1664
[3]   The Approximation Property of a One-Dimensional, Time Independent Schrodinger Equation with a Hyperbolic Potential Well [J].
Choi, Ginkyu ;
Jung, Soon-Mo .
MATHEMATICS, 2020, 8 (08)
[4]  
Czerwik S., 1994, Stability of Mappings of Hyers-Ulam Type, P81
[5]  
Dinda B, 2011, BULL MATH ANAL APPL, V3, P273
[6]  
EL-Fassi II, 2019, RACSAM REV R ACAD A, V113, P675, DOI 10.1007/s13398-018-0506-z
[7]   Stability of general A-cubic functional equations in modular spaces [J].
Eskandani, G. Zamani ;
Rassias, John Michael .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (02) :425-435
[8]   Probabilistic Modular Spaces and Linear Operators [J].
Fallahi, Kamal ;
Nourouzi, Kourosh .
ACTA APPLICANDAE MATHEMATICAE, 2009, 105 (02) :123-140
[9]   ON SOME RESULTS IN FUZZY METRIC-SPACES [J].
GEORGE, A ;
VEERAMANI, P .
FUZZY SETS AND SYSTEMS, 1994, 64 (03) :395-399
[10]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224