Deep learning in pharmacogenomics: from gene regulation to patient stratification

被引:103
作者
Kalinin, Alexandr A. [1 ,2 ]
Higgins, Gerald A. [1 ]
Reamaroon, Narathip [1 ]
Soroushmehr, Sayedmohammadreza [1 ]
Allyn-Feuer, Ari [1 ]
Dinov, Ivo D. [1 ,2 ,4 ]
Najarian, Kayvan [1 ,3 ]
Athey, Brian D. [1 ,4 ,5 ,6 ]
机构
[1] Univ Michigan, Med Sch, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Sch Nursing, SOCR, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Med Sch, Dept Emergency Med, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Michigan Inst Data Sci MIDAS, Ann Arbor, MI 48109 USA
[5] Univ Michigan Hlth Syst, Dept Internal Med, Ann Arbor, MI 48109 USA
[6] Univ Michigan, Med Sch, Dept Psychiat, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
adverse events; artificial intelligence; deep learning; drug discovery; drug-drug interaction; drug-gene interaction; noncoding regulatory variation; patient stratification; pharmacogenomics; ELECTRONIC HEALTH RECORDS; BIG DATA; NONCODING VARIANTS; 4D NUCLEOME; PREDICTION; DNA; GENERATION; EPIGENOME; ELEMENTS; NETWORKS;
D O I
10.2217/pgs-2018-0008
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
This Perspective provides examples of current and future applications of deep learning in pharmacogenomics, including: identification of novel regulatory variants located in noncoding domains of the genome and their function as applied to pharmacoepigenomics; patient stratification from medical records; and the mechanistic prediction of drug response, targets and their interactions. Deep learning encapsulates a family of machine learning algorithms that has transformed many important subfields of artificial intelligence over the last decade, and has demonstrated breakthrough performance improvements on a wide range of tasks in biomedicine. We anticipate that in the future, deep learning will be widely used to predict personalized drug response and optimize medication selection and dosing, using knowledge extracted from large and complex molecular, epidemiological, clinical and demographic datasets.
引用
收藏
页码:629 / 650
页数:22
相关论文
共 126 条
[51]   A vision and strategy for the virtual physiological human in 2010 and beyond [J].
Hunter, Peter ;
Coveney, Peter V. ;
de Bono, Bernard ;
Diaz, Vanessa ;
Fenner, John ;
Frangi, Alejandro F. ;
Harris, Peter ;
Hose, Rod ;
Kohl, Peter ;
Lawford, Pat ;
McCormack, Keith ;
Mendes, Miriam ;
Omholt, Stig ;
Quarteroni, Alfio ;
Skar, John ;
Tegner, Jesper ;
Thomas, S. Randall ;
Tollis, Ioannis ;
Tsamardinos, Ioannis ;
van Beek, Johannes H. G. M. ;
Viceconti, Marco .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1920) :2595-2614
[52]  
Husain S.S., 2015, J Big Data, V2
[53]  
Hwang U, 2017, 171104126 ARXIV
[54]  
Iglovikov V, 2017, 171205053 ARXIV
[55]   In-solution hybrid capture of bisulfite-converted DNA for targeted bisulfite sequencing of 174 ADME genes [J].
Ivanov, Maxim ;
Kals, Mart ;
Kacevska, Marina ;
Metspalu, Andres ;
Ingelman-Sundberg, Magnus ;
Milani, Lili .
NUCLEIC ACIDS RESEARCH, 2013, 41 (06) :e72
[56]  
Jiyun Z, 2016, 2016 IEEE INT C BIOI
[57]   druGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico [J].
Kadurin, Artur ;
Nikolenko, Sergey ;
Khrabrov, Kuzma ;
Aliper, Alex ;
Zhavoronkov, Alex .
MOLECULAR PHARMACEUTICS, 2017, 14 (09) :3098-3104
[58]   The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology [J].
Kadurin, Artur ;
Aliper, Alexander ;
Kazennov, Andrey ;
Mamoshina, Polina ;
Vanhaelen, Quentin ;
Khrabrov, Kuzma ;
Zhavoronkov, Alex .
ONCOTARGET, 2017, 8 (07) :10883-10890
[59]  
Kale David C, 2015, AMIA Annu Symp Proc, V2015, P677
[60]  
Kalinin AA, 2017, BIORXIV, DOI [10.1101/208207, DOI 10.1101/208207]