Nonradiative Electron-Hole Recombination Rate Is Greatly Reduced by Defects in Monolayer Black Phosphorus: Ab Initio Time Domain Study

被引:101
作者
Long, Run [1 ]
Fang, Weihai [1 ]
Akimov, Alexey V. [2 ]
机构
[1] Beijing Normal Univ, Key Lab Theoret & Computat Photochem, Coll Chem, Minist Educ, Beijing 100875, Peoples R China
[2] SUNY Buffalo, Dept Chem, Nat Sci Complex, Buffalo, NY 14260 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
NONADIABATIC MOLECULAR-DYNAMICS; CHARGE-TRANSFER; PYXAID PROGRAM; FIELD; RELAXATION; PHOTODETECTOR; INJECTION; GRAPHENE; SCHEMES; ROBUST;
D O I
10.1021/acs.jpclett.6b00001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report ab initio time-domain simulations of nonradiative electron-hole recombination and electronic dephasing in ideal and defect-containing monolayer black phosphorus (MBP). Our calculations predict that the presence of phosphorus divacancy in MBP (MBP-DV) substantially reduces the nonradiative recombination rate, with time scales on the order of 1.57 ns. The luminescence line width in ideal MBP of 150 meV is 2.5 times larger than MBP-DV at room temperature, and is in excellent agreement with experiment. We find that the electron-hole recombination in ideal MBP is driven by the 450 cm(-1) vibrational mode, whereas the recombination in the MBP-DV system is driven by a broad range of vibrational modes. The reduced electron-phonon coupling and increased bandgap in MBP-DV rationalize slower recombination in this material, suggesting that electron-phonon energy losses in MBP can be minimized by creating suitable defects in semiconductor device material.
引用
收藏
页码:653 / 659
页数:7
相关论文
共 71 条
[1]   Black Phosphorus Gas Sensors [J].
Abbas, Ahmad N. ;
Liu, Bilu ;
Chen, Liang ;
Ma, Yuqiang ;
Cong, Sen ;
Aroonyadet, Noppadol ;
Koepf, Marianne ;
Nilges, Tom ;
Zhou, Chongwu .
ACS NANO, 2015, 9 (05) :5618-5624
[2]   Correlated electron-nuclear dynamics: Exact factorization of the molecular wavefunction [J].
Abedi, Ali ;
Maitra, Neepa T. ;
Gross, E. K. U. .
JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (22)
[3]   Influence of thermal fluctuations on interfacial electron transfer in functionalized TiO2 semiconductors [J].
Abuabara, SG ;
Rego, LGC ;
Batista, VS .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (51) :18234-18242
[4]  
Akimov A. V., 2015, ENCY NANOTECHNOLOGY, P1, DOI DOI 10.1007/978-94-007-6178-0_100932-1
[5]   Coherence penalty functional: A simple method for adding decoherence in Ehrenfest dynamics [J].
Akimov, Alexey V. ;
Long, Run ;
Prezhdo, Oleg V. .
JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (19)
[6]   Advanced Capabilities of the PYXAID Program: Integration Schemes, Decoherenc:e Effects, Multiexcitonic States, and Field-Matter Interaction [J].
Akimov, Alexey V. ;
Prezhdo, Oleg V. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (02) :789-804
[7]   Nonadiabatic Dynamics of Charge Transfer and Singlet Fission at the Pentacene/C60 Interface [J].
Akimov, Alexey V. ;
Prezhdo, Oleg V. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (04) :1599-1608
[8]   The PYXAID Program for Non-Adiabatic Molecular Dynamics in Condensed Matter Systems [J].
Akimov, Alexey V. ;
Prezhdo, Oleg V. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (11) :4959-4972
[9]   Nonadiabatic Dynamics of Positive Charge during Photocatalytic Water Splitting on GaN(10-10) Surface: Charge Localization Governs Splitting Efficiency [J].
Akimov, Alexey V. ;
Muckerman, James T. ;
Prezhdo, Oleg V. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (23) :8682-8691
[10]   Theoretical Insights into Photoinduced Charge Transfer and Catalysis at Oxide Interfaces [J].
Akimov, Alexey V. ;
Neukirch, Amanda J. ;
Prezhdo, Oleg V. .
CHEMICAL REVIEWS, 2013, 113 (06) :4496-4565