A method of gene expression data transfer from cell lines to cancer patients for machine-learning prediction of drug efficiency

被引:50
作者
Borisov, Nicolas [1 ,2 ]
Tkachev, Victor [2 ,3 ]
Suntsova, Maria [2 ,4 ,5 ]
Kovalchuk, Olga [6 ,7 ]
Zhavoronkov, Alex [8 ]
Muchnik, Ilya [9 ]
Buzdin, Anton [1 ,2 ,3 ,4 ,5 ]
机构
[1] Natl Res Ctr Kurchatov Inst, Ctr Convergence Nano Bio Informat & Cognit Sci &, Moscow, Russia
[2] First Oncol Res & Advisory Ctr, Dept R&D, Moscow, Russia
[3] OmicsWay Corp, Dept R&D, Walnut, CA USA
[4] Shemyakin Ovchinnikov Inst Bioorgan Chem, Grp Genom Regulat Cell Signaling Syst, Moscow, Russia
[5] D Rogachyov Fed Res Ctr Pediat Hematol Oncol & Im, Lab Bioinformat, Moscow 117198, Russia
[6] Univ Lethbridge, Dept Biol Sci, Lethbridge, AB, Canada
[7] Canada Canc & Aging Res Labs, Lethbridge, AB, Canada
[8] Johns Hopkins Univ, ETC, Insilico Med Inc, Baltimore, MD USA
[9] Rutgers State Univ, Hill Ctr, Piscataway, NJ USA
关键词
Bioinformatics; cancer; personalized medicine; machine learning; drug scoring; support vector machines; cell lines; gene expression profiling; pathway activation scoring; ACTIVATION; CLASSIFICATION; BIOINFORMATICS; INHIBITION; ONCOFINDER;
D O I
10.1080/15384101.2017.1417706
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Personalized medicine implies that distinct treatment methods are prescribed to individual patients according several features that may be obtained from, e.g., gene expression profile. The majority of machine learning methods suffer from the deficiency of preceding cases, i.e. the gene expression data on patients combined with the confirmed outcome of known treatment methods. At the same time, there exist thousands of various cell lines that were treated with hundreds of anti-cancer drugs in order to check the ability of these drugs to stop the cell proliferation, and all these cell line cultures were profiled in terms of their gene expression. Here we present a new approach in machine learning, which can predict clinical efficiency of anti-cancer drugs for individual patients by transferring features obtained from the expression-based data from cell lines. The method was validated on three datasets for cancer-like diseases (chronic myeloid leukemia, as well as lung adenocarcinoma and renal carcinoma) treated with targeted drugs - kinase inhibitors, such as imatinib or sorafenib.
引用
收藏
页码:486 / 491
页数:6
相关论文
共 27 条
[1]  
Aliper AM, 2017, METHODS MOL BIOL, V1613, P31, DOI 10.1007/978-1-4939-7027-8_3
[2]   AN INTRODUCTION TO KERNEL AND NEAREST-NEIGHBOR NONPARAMETRIC REGRESSION [J].
ALTMAN, NS .
AMERICAN STATISTICIAN, 1992, 46 (03) :175-185
[3]   A method for predicting target drug efficiency in cancer based on the analysis of signaling pathway activation [J].
Artemov, Artem ;
Aliper, Alexander ;
Korzinkin, Michael ;
Lezhnina, Ksenia ;
Jellen, Leslie ;
Zhukov, Nikolay ;
Roumiantsev, Sergey ;
Gaifullin, Nurshat ;
Zhavoronkov, Alex ;
Borisov, Nicolas ;
Buzdin, Anton .
ONCOTARGET, 2015, 6 (30) :29347-29356
[4]  
Bartlett P, 1999, ADVANCES IN KERNEL METHODS, P43
[5]   Bioinformatic identification and characterization of human endothelial cell-restricted genes [J].
Bhasin, Manoj ;
Yuan, Lei ;
Keskin, Derin B. ;
Otu, Hasan H. ;
Libermann, Towia A. ;
Oettgen, Peter .
BMC GENOMICS, 2010, 11
[6]   SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation [J].
Blewitt, Marnie E. ;
Gendrel, Anne-Valerie ;
Pang, Zhenyi ;
Sparrow, Duncan B. ;
Whitelaw, Nadia ;
Craig, Jeffrey M. ;
Apedaile, Anwyn ;
Hilton, Douglas J. ;
Dunwoodie, Sally L. ;
Brockdorff, Neil ;
Kay, Graham F. ;
Whitelaw, Emma .
NATURE GENETICS, 2008, 40 (05) :663-669
[7]   Comprehensive Biomarker Analysis and Final Efficacy Results of Sorafenib in the BATTLE Trial [J].
Blumenschein, George R., Jr. ;
Saintigny, Pierre ;
Liu, Suyu ;
Kim, Edward S. ;
Tsao, Anne S. ;
Herbst, Roy S. ;
Alden, Christine ;
Lee, J. Jack ;
Tang, Ximing ;
Stewart, David J. ;
Kies, Merrill S. ;
Fossella, Frank V. ;
Tran, Hai T. ;
Mao, L. ;
Hicks, Marshall E. ;
Erasmus, Jeremy, Jr. ;
Gupta, Sanjay ;
Girard, Luc ;
Peyton, Michael ;
Diao, Lixia ;
Wang, Jing ;
Davis, Suzanne E. ;
Minna, John D. ;
Wistuba, Ignacio ;
Hong, Waun K. ;
Heymach, John V. ;
Lippman, Scott M. .
CLINICAL CANCER RESEARCH, 2013, 19 (24) :6967-6975
[8]   Data aggregation at the level of molecular pathways improves stability of experimental transcriptomic and proteomic data [J].
Borisov, Nicolas ;
Suntsova, Maria ;
Sorokin, Maxim ;
Garazha, Andrew ;
Kovalchuk, Olga ;
Aliper, Alexander ;
Ilnitskaya, Elena ;
Lezhnina, Ksenia ;
Korzinkin, Mikhail ;
Tkachev, Victor ;
Saenko, Vyacheslav ;
Saenko, Yury ;
Sokov, Dmitry G. ;
Gaifullin, Nurshat M. ;
Kashintsev, Kirill ;
Shirokorad, Valery ;
Shabalina, Irina ;
Zhavoronkov, Alex ;
Mishra, Bhubaneswar ;
Cantor, Charles R. ;
Buzdin, Anton .
CELL CYCLE, 2017, 16 (19) :1810-1823
[9]  
Buzdin AA, 2017, METHODS MOL BIOL, V1613, P53, DOI 10.1007/978-1-4939-7027-8_4
[10]   Oncofinder, a new method for the analysis of intracellular signaling pathway activation using transcriptomic data [J].
Buzdin, Anton A. ;
Zhavoronkov, Alex A. ;
Korzinkin, Mikhail B. ;
Venkova, Larisa S. ;
Zenin, Alexander A. ;
Smirnov, Philip Yu. ;
Borisov, Nikolay M. .
FRONTIERS IN GENETICS, 2014, 5