Inverse problem and equivalent contact systems

被引:6
作者
de Leon, Manuel [1 ,2 ]
Gaset, Jordi [3 ]
Lainz, Manuel [1 ]
机构
[1] UAM, UC3M, CSIC, Inst Ciencias Matemat, Calle Nicolas Cabrera 13-15,Campus Cantoblanco, Madrid 28049, Spain
[2] Real Acad Ciencias Exactas Fis & Nat, Calle Valverde 22, Madrid 28004, Spain
[3] Univ Int La Rioja, Escuela Super Ingn & Tecnol, Logrono, Spain
关键词
Inverse problem; Equivalent Lagrangians; Contact geometry; EQUATIONS; CALCULUS; GEOMETRY; DYNAMICS;
D O I
10.1016/j.geomphys.2022.104500
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present several results on the inverse problem and equivalent contact Lagrangian systems. These problems naturally lead to consider smooth transformations on the z variable (i.e., reparametrizations of the action). We present the extended contact Lagrangian systems to formalize this notion. With this structure we define horizontal equivalence of Lagrangians, which generalizes the symplectic case. We also present some results on the inverse problem for extended contact systems.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:18
相关论文
共 32 条
[1]   Contact geometry for simple thermodynamical systems with friction [J].
Anahory Simoes, Alexandre ;
de Leon, Manuel ;
Lainz Valcazar, Manuel ;
Martin de Diego, David .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 476 (2241)
[2]  
Banyaga A., 2016, Nankai Tracts in Mathematics, V15
[3]   Invariant measures for contact Hamiltonian systems: symplectic sandwiches with contact bread [J].
Bravetti, A. ;
de Leon, M. ;
Marrero, J. C. ;
Padron, E. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (45)
[4]   Contact geometry and thermodynamics [J].
Bravetti, Alessandro .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16
[5]   Contact Hamiltonian Dynamics: The Concept and Its Use [J].
Bravetti, Alessandro .
ENTROPY, 2017, 19 (10)
[6]   Contact manifolds and dissipation, classical and quantum [J].
Ciaglia, F. M. ;
Cruz, H. ;
Marmo, G. .
ANNALS OF PHYSICS, 2018, 398 :159-179
[7]   A GEOMETRICAL VERSION OF THE HELMHOLTZ CONDITIONS IN TIME-DEPENDENT LAGRANGIAN DYNAMICS [J].
CRAMPIN, M ;
PRINCE, GE ;
THOMPSON, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (07) :1437-1447
[8]   TOWARDS A GEOMETRICAL UNDERSTANDING OF DOUGLAS SOLUTION OF THE INVERSE PROBLEM OF THE CALCULUS OF VARIATIONS [J].
CRAMPIN, M ;
SARLET, W ;
MARTINEZ, E ;
BYRNES, GB ;
PRINCE, GE .
INVERSE PROBLEMS, 1994, 10 (02) :245-260
[9]   ON THE DIFFERENTIAL GEOMETRY OF THE EULER-LAGRANGE EQUATIONS, AND THE INVERSE PROBLEM OF LAGRANGIAN DYNAMICS [J].
CRAMPIN, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (10) :2567-2575
[10]  
de Len M., 2020, OPTIMAL CONTROL CONT