Products of elementary matrices and non-Euclidean principal ideal domains

被引:12
作者
Cossu, L. [1 ]
Zanardo, P. [1 ]
Zannier, U. [2 ]
机构
[1] Dipartimento Matemat Tullio Levi Civita, Via Trieste 63, I-35121 Padua, Italy
[2] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy
关键词
Non-Euclidean PID; Generalized Euclidean rings; Elementary matrices; Idempotent matrices; IDEMPOTENT MATRICES; INTEGRAL-DOMAINS; RINGS;
D O I
10.1016/j.jalgebra.2017.11.051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A classical problem, originated by Cohn's 1966 paper [1], is to characterize the integral domains R satisfying the property: (GE(n)) "every invertible n x n matrix with entries in R is a product of elementary matrices". Cohn called these rings generalized Euclidean, since the classical Euclidean rings do satisfy (GE(n)) for every n > 0. Important results on algebraic number fields motivated a natural conjecture: a non-Euclidean principal ideal domain R does not satisfy (GE(n)) for some n > 0. We verify this conjecture for two important classes of non-Euclidean principal ideal domains: (1) the coordinate rings of special algebraic curves, among them the elliptic curves having only one rational point; (2) the non-Euclidean PID's constructed by a fixed procedure, described in Anderson's 1988 paper [2]. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:182 / 205
页数:24
相关论文
共 27 条
[1]  
Anderson D. D., 1988, ALGEBRA, V16, P1221
[2]  
[Anonymous], 1991, LONDON MATH SOC STUD, DOI DOI 10.1017/CBO9781139172530
[3]  
Bass H., 1974, EXP LECT CBMS REG C, V20
[4]   EUCLIDEAN RINGS OF AFFINE CURVES [J].
BROWN, ML .
MATHEMATISCHE ZEITSCHRIFT, 1991, 208 (03) :467-488
[5]   The 2-stage Euclidean algorithm and the restricted Nagata's pairwise algorithm [J].
Chen, Ching-An ;
Leu, Ming-Guang .
JOURNAL OF ALGEBRA, 2011, 348 (01) :1-13
[6]  
Cohn P.M., 1963, Trans. Am. Math Soc, V109, P332
[7]  
Cohn P. M., 1966, PUBL MATH-PARIS, V30, P5
[8]  
COOKE GE, 1976, J REINE ANGEW MATH, V282, P133
[9]  
COOKE GE, 1976, J REINE ANGEW MATH, V283, P70
[10]   ON PRODUCTS OF IDEMPOTENT MATRICES [J].
ERDOS, JA .
GLASGOW MATHEMATICAL JOURNAL, 1967, 8 :118-&