Global existence and asymptotic decay of solutions to the non-isentropic Euler-Maxwell system

被引:18
作者
Feng, Yue-Hong [1 ,2 ]
Wang, Shu [1 ]
Kawashima, Shuichi [3 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
[2] Univ Blaise Pascal, Math Lab, F-63000 Clermont Ferrand, France
[3] Kyushu Univ, Fac Math, Fukuoka 8128581, Japan
关键词
Non-isentropic Euler-Maxwell equations; globally smooth solution; asymptotic behavior; SMOOTH SOLUTIONS; EQUATIONS; BEHAVIOR; LIMIT;
D O I
10.1142/S0218202514500390
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The non-isentropic compressible Euler-Maxwell system is investigated in R-3 in this paper, and the L-q time decay rate for the global smooth solution is established. It is shown that the density and temperature of electron converge to the equilibrium states at the same rate (1 + t)(-11/4) in L-q norm. This phenomenon on the charge transport shows the essential relation of the equations with the non-isentropic Euler-Maxwell and the isentropic Euler-Maxwell equations.
引用
收藏
页码:2851 / 2884
页数:34
相关论文
共 20 条
[1]  
[Anonymous], 1984, Applied Mathematical Sciences
[2]  
[Anonymous], 1984, INTRO PLASMA PHYS CO
[3]  
[Anonymous], PUBLICATIONS MATH OR
[4]   Compressible Euler-Maxwell equations [J].
Chen, GQ ;
Jerome, JW ;
Wang, DH .
TRANSPORT THEORY AND STATISTICAL PHYSICS, 2000, 29 (3-5) :311-331
[5]  
Dinklage Andreas, 2005, LECT NOTES PHYS, V670
[6]   GLOBAL SMOOTH FLOWS FOR THE COMPRESSIBLE EULER-MAXWELL SYSTEM. THE RELAXATION CASE [J].
Duan, Renjun .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2011, 8 (02) :375-413
[7]   MULTIDIMENSIONAL DIFFUSION WAVES FOR THE NAVIER-STOKES EQUATIONS OF COMPRESSIBLE FLOW [J].
HOFF, D ;
ZUMBRUN, K .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1995, 44 (02) :603-676
[8]  
Jerome JW, 2005, CONTEMP MATH, V371, P193
[9]  
Jerome JW., 2003, Diff Integral Equ, V16, P1345
[10]   CAUCHY-PROBLEM FOR QUASILINEAR SYMMETRIC HYPERBOLIC SYSTEMS [J].
KATO, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1975, 58 (03) :181-205