Global well-posedness and scattering for the focusing energy-critical nonlinear Schrodinger equations of fourth order in the radial case

被引:95
作者
Miao, Changxing [2 ]
Xu, Guixiang [2 ]
Zhao, Lifeng [1 ]
机构
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
基金
中国博士后科学基金;
关键词
Focusing; Energy-critical; Radial; Fourth-order Schrodinger equations; Global well-posedness; Scattering; CAUCHY-PROBLEM; WELLPOSEDNESS;
D O I
10.1016/j.jde.2008.11.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the focusing energy-critical nonlinear Schrodinger equation Of fourth order iu(t) + Delta(2)u = vertical bar u vertical bar(8/d-4)u, d >= 5, We prove that if a maximal-lifespan radial solution u: I x R d, C obeys sup(t is an element of l) parallel to Delta u(t)parallel to(2) < parallel to Delta W parallel to(2), then it is global and scatters both forward and backward in time. Here W denotes the ground state, which is a stationary solution of the equation. In particular, if a Solution has both energy and kinetic energy less than those of the ground state W at some point in time, then the Solution is global and scatters. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:3715 / 3749
页数:35
相关论文
共 29 条
[1]   High frequency approximation of solutions to critical nonlinear wave equations [J].
Bahouri, H ;
Gérard, P .
AMERICAN JOURNAL OF MATHEMATICS, 1999, 121 (01) :131-175
[2]   Dispersion estimates for fourth order Schrodinger equations [J].
Ben-Artzi, M ;
Koch, H ;
Saut, JC .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (02) :87-92
[3]   Global wellposedness of defocusing critical nonlinear Schrodinger equation in the radial case [J].
Bourgain, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (01) :145-171
[4]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[5]   Global well-posedness and scattering for the energy-critical nonlinear Schrodinger equation in R3 [J].
Colliander, J. ;
Keel, M. ;
Staffilani, G. ;
Takaoka, H. ;
Tao, T. .
ANNALS OF MATHEMATICS, 2008, 167 (03) :767-865
[6]  
DUYCKAERTS T, ARXIV07103630
[7]   CRITICAL EXPONENTS, CRITICAL DIMENSIONS AND THE BIHARMONIC OPERATOR [J].
EDMUNDS, DE ;
FORTUNATO, D ;
JANNELLI, E .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 112 (03) :269-289
[8]   Self-focusing with fourth-order dispersion [J].
Fibich, G ;
Ilan, B ;
Papanicolaou, G .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 62 (04) :1437-1462
[9]  
GUO B., 2002, Differential Integral Equations, V15, P1073
[10]   Well-posedness of Cauchy problem for the fourth order nonlinear Schrodinger equations in multi-dimensional spaces [J].
Hao, Chengchun ;
Hsiao, Ling ;
Wang, Baoxiang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (01) :58-83