Coorbit Spaces with Voice in a Frechet Space

被引:13
作者
Dahlke, S. [1 ]
De Mari, F. [2 ]
De Vito, E. [2 ]
Labate, D. [3 ]
Steidl, G. [4 ]
Teschke, G. [5 ]
Vigogna, S. [6 ]
机构
[1] Philipps Univ Marburg, Math & Informat FB12, Hans Meerwein Str, D-35032 Marburg, Germany
[2] Univ Genoa, Dipartimento Matemat, Via Dodecaneso 35, Genoa, Italy
[3] Univ Houston, Dept Math, 651 PGH Bldg, Houston, TX 77204 USA
[4] Univ Kaiserslautern, Dept Math, Paul Ehrlich Str 31, D-67663 Kaiserslautern, Germany
[5] Univ Appl Sci, Hsch Neubrandenburg, Inst Computat Math Sci & Technol, Brodaer Str 2, D-17033 Neubrandenburg, Germany
[6] Duke Univ, Dept Math, 120 Sci Dr, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
Coorbit spaces; Frechet spaces; Representations of locally compact groups; Reproducing formulae; INTEGRABLE GROUP-REPRESENTATIONS; BANACH-SPACES; ATOMIC DECOMPOSITIONS; LP-SPACES; FRAMES;
D O I
10.1007/s00041-016-9466-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We set up a new general coorbit space theory for reproducing representations of a locally compact second countable group G that are not necessarily irreducible nor integrable. Our basic assumption is that the kernel associated with the voice transform belongs to a Fr,chet space of functions on G, which generalizes the classical choice . Our basic example is , or a weighted versions of it. By means of this choice it is possible to treat, for instance, Paley-Wiener spaces and coorbit spaces related to Shannon wavelets and Schrodingerlets.
引用
收藏
页码:141 / 206
页数:66
相关论文
共 45 条
[1]   AN ARBITRARY INTERSECTION OF Lp-SPACES [J].
Abtahi, F. ;
Amini, H. G. ;
Lotfi, H. A. ;
Rejali, A. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 85 (03) :433-445
[2]  
Alberti GS, 2013, J FOURIER ANAL APPL, V19, P651, DOI 10.1007/s00041-012-9255-0
[3]  
Alberti GS, 2014, MONATSH MATH, V173, P261, DOI 10.1007/s00605-013-0542-x
[4]  
Ali ST., 2000, GRAD TEXT C, DOI 10.1007/978-1-4612-1258-4
[5]  
[Anonymous], 1990, The analysis of linear partial differential operators
[6]  
[Anonymous], 2002, Trigonometric Series
[7]  
[Anonymous], 2007, Mathematical Surveys and Monographs
[8]  
[Anonymous], 1987, Topological vector classes, DOI DOI 10.1007/978-3-642-61715-7
[9]  
[Anonymous], 1978, Ann. Inst. Fourier, DOI DOI 10.5802/AIF.689
[10]  
[Anonymous], 2004, ELEMENTS MATH