Subadditive pressure for triangular maps

被引:10
作者
Manning, A. [1 ]
Simon, K.
机构
[1] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
[2] Budapest Univ Technol & Econ, Inst Math, H-1111 Budapest, Hungary
关键词
D O I
10.1088/0951-7715/20/1/009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate properties of the zero of the subadditive pressure used by Falconer, Barreira and Zhang to estimate the box and Hausdorff dimension of a non-conformal repeller. In the conformal case, and in Falconer's 1-bunched non-conformal case, the contraction rates satisfy bounded distortion and so this zero is insensitive to where on each cylinder the contraction is evaluated. We study some nonlinear two-dimensional examples which do not satisfy bounded distortion but do exhibit the same insensitivity. Here the contraction rate fails to specify ellipses that can be used to cover cylinders.
引用
收藏
页码:133 / 149
页数:17
相关论文
共 16 条
[1]  
24Walters P., 2000, An Introduction to Ergodic Theory, V79
[2]  
[Anonymous], 2003, FRACTAL GEOMETRY, DOI DOI 10.1002/0470013850
[3]   Dimension estimates in nonconformal hyperbolic dynamic [J].
Barreira, L .
NONLINEARITY, 2003, 16 (05) :1657-1672
[4]   A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems [J].
Barreira, LM .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1996, 16 :871-927
[5]  
Bowen R., 1979, PUBLICATIONS MATH IH, V50, P11, DOI [10.1007/BF02684767, DOI 10.1007/BF02684767]
[6]  
Bowen R., 1975, LECT NOTES MATH, V470
[7]  
DOUADY A, 1980, CR ACAD SCI A MATH, V290, P1135
[8]  
Falconer K., 1997, Techniques in Fractal Geometry
[9]   THE HAUSDORFF DIMENSION OF SELF-AFFINE FRACTALS [J].
FALCONER, KJ .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1988, 103 :339-350
[10]   BOUNDED DISTORTION AND DIMENSION FOR NONCONFORMAL REPELLERS [J].
FALCONER, KJ .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1994, 115 :315-334