A P-stable exponentially fitted method for the numerical integration of the Schrodinger equation

被引:43
作者
Kalogiratou, Z
Simos, TE [2 ]
机构
[1] Technol Inst Western Macedonia Kastoria, Dept Int Trade, GR-52100 Kastoria, Greece
[2] Democritus Univ Thrace, Sch Engn, Dept Civil Engn, Sect Math, GR-67100 Xanthi, Greece
关键词
Schrodinger equation; exponentially fitted; multistep methods; finite difference methods; resonance problem;
D O I
10.1016/S0096-3003(99)00051-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A P-stable exponentially fitted method is developed in this paper for the numerical integration of the Schrodinger equation. An application to the resonance problem of the radial Schrodinger equation indicates that the new method is generally more efficient than the previously developed exponentially fitted methods of the same kind. (C) 2000 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:99 / 112
页数:14
相关论文
共 36 条
[1]  
Blatt J M, 1967, J COMP PHYSIOL, V1, P382, DOI [10.1016/0021-9991(67)90046-0, DOI 10.1016/0021-9991(67)90046-0]
[2]   A 6TH-ORDER EXPONENTIALLY FITTED METHOD FOR THE NUMERICAL-SOLUTION OF THE RADIAL SCHRODINGER-EQUATION [J].
CASH, JR ;
RAPTIS, AD ;
SIMOS, TE .
JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 91 (02) :413-423
[3]   A HIGH-ORDER METHOD FOR THE NUMERICAL-INTEGRATION OF THE ONE-DIMENSIONAL SCHRODINGER-EQUATION [J].
CASH, JR ;
RAPTIS, AD .
COMPUTER PHYSICS COMMUNICATIONS, 1984, 33 (04) :299-304
[4]   A NOUMEROV-TYPE METHOD WITH MINIMAL PHASE-LAG FOR THE INTEGRATION OF 2ND-ORDER PERIODIC INITIAL-VALUE PROBLEMS .2. EXPLICIT METHOD [J].
CHAWLA, MM ;
RAO, PS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 15 (03) :329-337
[5]   2-STEP 4TH-ORDER P-STABLE METHODS WITH PHASE-LAG OF ORDER 6 FOR Y''=F(T,Y) [J].
CHAWLA, MM ;
RAO, PS ;
NETA, B .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 16 (02) :233-236
[6]   P-stability and exponential-fitting methods for y''=f(x, y) [J].
Coleman, JP ;
Ixaru, LG .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1996, 16 (02) :179-199
[8]  
Cooley JW., 1961, MATH COMPUT, V15, P363
[9]   RUNGE-KUTTA-NYSTROM TRIPLES [J].
DORMAND, JR ;
PRINCE, PJ .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1987, 13 (12) :937-949
[10]   HIGH-ORDER EMBEDDED RUNGE-KUTTA-NYSTROM FORMULAS [J].
DORMAND, JR ;
ELMIKKAWY, MEA ;
PRINCE, PJ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (04) :423-430