Variation of the plasmaspheric electron content derived from the podTEC observations of COSMIC LEO satellites to GPS signals

被引:7
作者
Zhang Man-Lian [1 ]
Liu Li-Bo [1 ]
Wan Wei-Xing [1 ]
Ning Bai-Qi [1 ]
机构
[1] Chinese Acad Sci, Inst Geol & Geophys, Key Lab Earth & Planetary Phys, Beijing 100029, Peoples R China
来源
CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION | 2016年 / 59卷 / 01期
关键词
Plasmasphere; Ionosphere; Total Electron Content (TEC); Plasmaspheric electron content; BOTTOMSIDE; IONOGRAMS; F2-LAYER; DENSITY; NEQUICK; MODEL; TEC;
D O I
10.6038/cjg20160101
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We tried to study the variations of the plasmaspheric electron content (PEC) using the PEG data derived from the podTEC observation of the COSMIC low Earth orbit (LEO) satellite to the GPS satellite signals. We first give a brief introduce to the method we used to convert the slant podTEC to the vertical PEC. Then we used the converted PEC data of the year 2008 to study the variations of PEC with the geomagnetic latitude (mLAT), magnetic local time (MLT) and with four different seasons. Besides, we made a study on the longitudinal variation of PEC using the extracted PEC data from two different longitudes (120 degrees E and 300 degrees E). Our study showed that: (1) The distribution of PEC is mainly confined to a region within +/- 45 degrees of the magnetic equator of the Earth; (2) PEC shows a well-defined diurnal variation pattern with higher values during daytime hours than during nighttime hours. PEG reaches its peak value at the hour around 12-16MLT, whereas it reaches its minimum value at around 4-5MLT. (3) PEC has a lowest value in the June solstice season (May August) compared with other seasons. (4) PEC shows an evident longitudinal variation and it has different seasonal variations for different longitudes.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 18 条
  • [1] Plasmaspheric electron content derived from GPS TEC and digisonde ionograms
    Belehaki, A
    Jakowski, N
    Reinisch, BW
    [J]. PATH TOWARD IMPROVED IONOSPHERE SPECIFICATION AND FORECAST MODELS, 2004, 33 (06): : 833 - 837
  • [2] International Reference Ionosphere 2007: Improvements and new parameters
    Bilitza, D.
    Reinisch, B. W.
    [J]. ADVANCES IN SPACE RESEARCH, 2008, 42 (04) : 599 - 609
  • [3] International Reference Ionosphere 2000
    Bilitza, D
    [J]. RADIO SCIENCE, 2001, 36 (02) : 261 - 275
  • [4] The international reference ionosphere today and in the future
    Bilitza, Dieter
    McKinnell, Lee-Anne
    Reinisch, Bodo
    Fuller-Rowell, Tim
    [J]. JOURNAL OF GEODESY, 2011, 85 (12) : 909 - 920
  • [5] Research on global plasmaspheric electron content by using LEO occultation and GPS data
    Chen, Peng
    Yao, Yibin
    [J]. ADVANCES IN SPACE RESEARCH, 2015, 55 (09) : 2248 - 2255
  • [6] An investigation on plasmaspheric electron content derived from ISR and GPS observations at Millstone Hill
    Chong Xiao-Yan
    Zhang Man-Lian
    Zhang Shun-Rong
    Wen Jin
    Liu Li-Bo
    Ning Bai-Qi
    Wan Wei-Xing
    [J]. CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2013, 56 (03): : 738 - 745
  • [7] Davies K., 1990, IEEE ELECTROMAGNETIC, V31
  • [8] A simple "geometric'' mapping function for the hydrostatic delay at radio frequencies and assessment of its performance
    Foelsche, U
    Kirchengast, G
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2002, 29 (10) : 111 - 1
  • [9] Leitinger R, 2005, ANN GEOPHYS-ITALY, V48, P525
  • [10] The contribution of the protonosphere to GPS total electron content: Experimental measurements
    Lunt, N
    Kersley, L
    Bishop, GJ
    Mazzella, AJ
    [J]. RADIO SCIENCE, 1999, 34 (05) : 1273 - 1280