Dynamical topological order parameters far from equilibrium

被引:203
作者
Budich, Jan Carl [1 ]
Heyl, Markus [2 ]
机构
[1] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-6020 Innsbruck, Austria
[2] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
关键词
MAJORANA FERMIONS; NANOWIRE; SUPERCONDUCTOR; PHASE; SIGNATURE;
D O I
10.1103/PhysRevB.93.085416
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce a topological quantum number-coined dynamical topological order parameter (DTOP)-that is dynamically defined in the real-time evolution of a quantum many-body system and represented by a momentum space winding number of the Pancharatnam geometric phase. Our construction goes conceptually beyond the standard notion of topological invariants characterizing the wave function of a system, which are constants of motion under coherent time evolution. In particular, we show that the DTOP can change its integer value at discrete times where so called dynamical quantum phase transitions occur, thus serving as a dynamical analog of an order parameter. Interestingly, studying quantum quenches in one-dimensional two-banded Bogoliubov-de Gennes models, we find that the DTOP is capable of resolving if the topology of the system Hamiltonian has changed over the quench. Furthermore, we investigate the relation of the DTOP to the dynamics of the string order parameter that characterizes the topology of such systems in thermal equilibrium.
引用
收藏
页数:7
相关论文
共 61 条
[1]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[2]   Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms [J].
Aidelsburger, M. ;
Lohse, M. ;
Schweizer, C. ;
Atala, M. ;
Barreiro, J. T. ;
Nascimbene, S. ;
Cooper, N. R. ;
Bloch, I. ;
Goldman, N. .
NATURE PHYSICS, 2015, 11 (02) :162-166
[3]   Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures [J].
Altland, A ;
Zirnbauer, MR .
PHYSICAL REVIEW B, 1997, 55 (02) :1142-1161
[4]   Dynamical quantum phase transitions and the Loschmidt echo: A transfer matrix approach [J].
Andraschko, F. ;
Sirker, J. .
PHYSICAL REVIEW B, 2014, 89 (12)
[5]  
[Anonymous], 2011, QUANTUM PHASE TRANSI
[6]  
Atala M, 2013, NAT PHYS, V9, P795, DOI [10.1038/nphys2790, 10.1038/NPHYS2790]
[7]   Synchronization in the BCS pairing dynamics as a critical phenomenon [J].
Barankov, R. A. ;
Levitov, L. S. .
PHYSICAL REVIEW LETTERS, 2006, 96 (23)
[8]   Relaxation of Antiferromagnetic Order in Spin-1/2 Chains Following a Quantum Quench [J].
Barmettler, Peter ;
Punk, Matthias ;
Gritsev, Vladimir ;
Demler, Eugene ;
Altman, Ehud .
PHYSICAL REVIEW LETTERS, 2009, 102 (13)
[9]   STATISTICAL MECHANICS OF XY-MODEL .2. SPIN-CORRELATION FUNCTIONS [J].
BAROUCH, E ;
MCCOY, BM .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1971, 3 (02) :786-+