Thermal transport in semiconductor nanostructures, graphene, and related two-dimensional materials

被引:20
作者
Cocemasov, Alexandr I. [1 ]
Isacova, Calina I. [1 ]
Nika, Denis L. [1 ]
机构
[1] Moldova State Univ, Dept Phys & Engn, E Pokatilov Lab Phys & Engn Nanomat, MD-2009 Kishinev, Moldova
关键词
phonons; thermal conductivity; nanowire; graphene; two-dimensional (2D) materials; CONFINED ACOUSTIC PHONONS; BLACK PHOSPHORUS; SILICON NANOWIRES; BILAYER GRAPHENE; QUANTUM-WELL; CONDUCTIVITY; ENHANCEMENT; MOBILITY; HEAT; MOS2;
D O I
10.1088/1674-1056/27/5/056301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review experimental and theoretical results on thermal transport in semiconductor nanostructures (multilayer thin films, core/shell and segmented nanowires), single- and few-layer graphene, hexagonal boron nitride, molybdenum disulfide, and black phosphorus. Different possibilities of phonon engineering for optimization of electrical and heat conductions are discussed. The role of the phonon energy spectra modification on the thermal conductivity in semiconductor nanostructures is revealed. The dependence of thermal conductivity in graphene and related two-dimensional (2D) materials on temperature, flake size, defect concentration, edge roughness, and strain is analyzed.
引用
收藏
页数:9
相关论文
共 50 条
[21]   INTRODUCTION TO TWO-DIMENSIONAL MATERIALS [J].
Leng, Xuanye ;
Chen, Siyu ;
Yang, Kou ;
Chen, Musen ;
Shaker, Majid ;
Vdovin, Evgenii E. ;
Ge, Qi ;
Novoselov, Kostya S. ;
Andreeva, Daria, V .
SURFACE REVIEW AND LETTERS, 2021, 28 (08)
[22]   Bandgap engineering of two-dimensional semiconductor materials [J].
Chaves, A. ;
Azadani, J. G. ;
Alsalman, Hussain ;
da Costa, D. R. ;
Frisenda, R. ;
Chaves, A. J. ;
Song, Seung Hyun ;
Kim, Y. D. ;
He, Daowei ;
Zhou, Jiadong ;
Castellanos-Gomez, A. ;
Peeters, F. M. ;
Liu, Zheng ;
Hinkle, C. L. ;
Oh, Sang-Hyun ;
Ye, Peide D. ;
Koester, Steven J. ;
Lee, Young Hee ;
Avouris, Ph. ;
Wang, Xinran ;
Low, Tony .
NPJ 2D MATERIALS AND APPLICATIONS, 2020, 4 (01)
[23]   Maximizing the transport properties of two-dimensional fibrous materials [J].
Sadeghifar, Hamidreza .
MATERIALS TODAY COMMUNICATIONS, 2022, 32
[24]   Two-Dimensional Magnetic Nanostructures [J].
Xu, Junjie ;
Li, Wei ;
Hou, Yanglong .
TRENDS IN CHEMISTRY, 2020, 2 (02) :163-173
[25]   Two-Dimensional Phonon Transport in Supported Graphene [J].
Seol, Jae Hun ;
Jo, Insun ;
Moore, Arden L. ;
Lindsay, Lucas ;
Aitken, Zachary H. ;
Pettes, Michael T. ;
Li, Xuesong ;
Yao, Zhen ;
Huang, Rui ;
Broido, David ;
Mingo, Natalio ;
Ruoff, Rodney S. ;
Shi, Li .
SCIENCE, 2010, 328 (5975) :213-216
[26]   Mass production of two-dimensional materials beyond graphene and their applications [J].
Yang, Liusi ;
Chen, Wenjun ;
Yu, Qiangmin ;
Liu, Bilu .
NANO RESEARCH, 2021, 14 (06) :1583-1597
[27]   Graphene and other two-dimensional materials in advance solar cells [J].
Iqbal, Tahir ;
Fatima, Seerat ;
Bibi, Tasmia ;
Zafar, Maria .
OPTICAL AND QUANTUM ELECTRONICS, 2021, 53 (05)
[28]   Heteroatom doping of two-dimensional materials: From graphene to chalcogenides [J].
Zhu, Haoyue ;
Gan, Xin ;
McCreary, Amber ;
Lv, Ruitao ;
Lin, Zhong ;
Terrones, Mauricio .
NANO TODAY, 2020, 30 (30)
[29]   Graphene and two-dimensional materials for silicon technology [J].
Akinwande, Deji ;
Huyghebaert, Cedric ;
Wang, Ching-Hua ;
Serna, Martha I. ;
Goossens, Stijn ;
Li, Lain-Jong ;
Wong, H. -S. Philip ;
Koppens, Frank H. L. .
NATURE, 2019, 573 (7775) :507-518
[30]   Optical contrast for identifying the thickness of two-dimensional materials [J].
Bing, Dan ;
Wang, Yingying ;
Bai, Jing ;
Du, Ruxia ;
Wu, Guoqing ;
Liu, Liyan .
OPTICS COMMUNICATIONS, 2018, 406 :128-138