Modeling of Brillouin spectrum of a quantum dot crystal

被引:0
|
作者
Lazarenkova, OL [1 ]
Balandin, AA [1 ]
机构
[1] Univ Calif Riverside, Dept Elect Engn, Nano Device Lab, Riverside, CA 92521 USA
来源
关键词
quantum dot crystal; quantum dot superlattice; confined phonons; nanostructures; optical spectroscopy;
D O I
暂无
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We consider a novel type of nanostructures, which consists of closely spaced 3D-regimented arrays of semiconductor quantum dots. The analogy with "real" crystals in such structure is reinforced by strong carrier and phonon spectrum modification, which leads to the formation of mini-bands. Thus, we refer to this structure as quantum dot crystal (QDC). Brillouin spectroscopy is expected to provide useful information on the phonon spectrum modification in such nanostructures. In order to help with interpretation of experimental spectra, we develop a theoretical model and carry out simulation of Brillouin spectrum of a regimented array of quantum dots. The phonon spectrum of GexSi1-x/Si QDC is found from the numerical solution of the elasticity equation for the whole structure. It is shown that our approach allows one to include the effect of the matrix, e.g., barrier material, as well as dot regimentation, and lead to solutions different from simple Lamb-type calculations.
引用
收藏
页码:526 / 529
页数:4
相关论文
共 50 条
  • [1] Modeling of phonon dispersion in a semiconductor quantum dot crystal
    Lazarenkova, OL
    Balandin, AA
    MODELING AND NUMERICAL SIMULATION OF MATERIALS BEHAVIOR AND EVOLUTION, 2002, 731 : 307 - 312
  • [2] Modeling the Brillouin Spectrum in Raman Amplifier-Assisted Brillouin OTDR
    Vandborg, Mads
    Mathew, Neethu
    Christensen, Jesper
    Joy, Tomin
    Allousch, M. Ali
    Marx, Benjamin
    Gruner-Nielsen, Lars
    Rishoj, Lars
    Rottwitt, Karsten
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2024, 42 (18) : 6286 - 6292
  • [3] Modeling and Design of Photonic Crystal Quantum-Dot Semiconductor Optical Amplifiers
    Taleb, Hussein
    Abedi, Kambiz
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (07) : 2419 - 2426
  • [4] On the spectrum of a magnetic quantum dot in graphene
    De Martino, A.
    Egger, R.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2010, 25 (03)
  • [5] Brillouin Gain Spectrum Characteristics of Photonic Crystal Fibers
    Pan Yuhang
    Lu Yuangang
    Peng Jianqin
    Ma Haixia
    Wang Jiming
    ACTA OPTICA SINICA, 2019, 39 (06)
  • [6] Quantum dot photonic crystal lasers
    Yoshie, T
    Shchekin, OB
    Chen, H
    Deppe, DG
    Scherer, A
    ELECTRONICS LETTERS, 2002, 38 (17) : 967 - 968
  • [7] Quantum-dot crystal defects
    Kiravittaya, S.
    Schmidt, O. G.
    APPLIED PHYSICS LETTERS, 2008, 93 (17)
  • [8] Miniband formation in a quantum dot crystal
    Lazarenkova, OL
    Balandin, AA
    JOURNAL OF APPLIED PHYSICS, 2001, 89 (10) : 5509 - 5515
  • [9] Quantum Dot Photonic Crystal Circuits
    Schneider, C.
    Hoefling, S.
    Kamp, M.
    le Feber, B.
    Rotenberg, N.
    Kuipers, L.
    Maksimov, A. A.
    Tartakovskii, I. I.
    Filatov, E. V.
    Kulakovskii, V. D.
    Young, A.
    Lang, B.
    Beggs, D. M.
    Rarity, J. G.
    Oulton, R.
    2015 17th International Conference on Transparent Optical Networks (ICTON), 2015,
  • [10] Quantum dot photonic crystal detectors
    Posani, Kalyan Teja
    Tripathi, Vaibhav
    Annamalai, Senthil
    Krishna, Sanjay
    Perahia, Raviv
    Crisafulli, Orion
    Painter, Oskar
    QUANTUM DOTS, PARTICLES, AND NANOCLUSTERS III, 2006, 6129