Proteome and Secretome Characterization of Glioblastoma-Derived Neural Stem Cells

被引:40
作者
Okawa, Satoshi [1 ]
Gagrica, Sladjana [2 ]
Blin, Carla [2 ,3 ,4 ]
Ender, Christine [2 ]
Pollard, Steven M. [2 ,3 ,4 ]
Krijgsveld, Jeroen [1 ,5 ,6 ,7 ]
机构
[1] EMBL, Heidelberg, Germany
[2] UCL, UCL Canc Inst, Dept Canc Biol, Samantha Dickson Brain Canc Unit, London, England
[3] Univ Edinburgh, MRC Ctr Regenerat Med, BioQuarter,5 Little France Dr, SCRM Bldg, Edinburgh EH16 4UU, Midlothian, Scotland
[4] Univ Edinburgh, Edinburgh Canc Res UK Ctr, Edinburgh EH16 4UU, Midlothian, Scotland
[5] German Canc Res Ctr, Div Prote Stem cells & Canc, Heidelberg, Germany
[6] CellNetworks Cluster Excellence, Heidelberg, Germany
[7] Heidelberg Univ, Heidelberg, Germany
关键词
Glioma; Neural stem cell; Cell surface markers; Pluripotency; CYSTATIN-C EXPRESSION; IN-VIVO; TUMOR-GROWTH; CANCER; GLIOMA; DIFFERENTIATION; IDENTIFICATION; PROTEINS; REVEALS; SUPPRESSION;
D O I
10.1002/stem.2542
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Glioblastoma multiforme (GBM) (gradeIV astrocytoma) is the most common and aggressive primary brain tumor. GBM consists of heterogeneous cell types including a subset of stem cell-like cells thought to sustain tumor growth. These tumor-initiating glioblastoma multiforme-derived neural stem (GNS) cells as well as their genetically normal neural stem (NS) counterparts can be propagated in culture as relatively pure populations. Here, we perform quantitative proteomics to globally characterize and compare total proteome plus the secreted proteome (secretome) between GNS cells and NS cells. Proteins and pathways that distinguish malignant cancer (GNS) stem cells from their genetically normal counterparts (NS cells) might have value as new biomarkers or therapeutic targets. Our analysis identified and quantified - 7,500 proteins in the proteome and - 2,000 in the secretome, 447 and 138 of which were differentially expressed, respectively. Notable tumorassociated processes identified using gene set enrichment analysis included: extracellular matrix interactions, focal adhesion, cell motility, and cell signaling. We focused on differentially expressed surface proteins, and identified 26 that participate in ligand- receptor pairs that play a prominent role in tumorigenesis. Immunocytochemistry and immunoblotting confirmed that CD9, a recently identified marker of adult subventricular zone NS cells, was consistently enriched across a larger set of primary GNS cell lines. CD9 may, therefore, have value as a GNS- specific surface marker and a candidate therapeutic target. Altogether, these findings support the notion that increased cell- matrix and cell-ell adhesion molecules play a crucial role in promoting the tumor initiating and infiltrative properties of GNS cells.
引用
收藏
页码:967 / 980
页数:14
相关论文
共 50 条
[21]   Human Glioblastoma-Derived Mesenchymal Stem Cell to Pericytes Transition and Angiogenic Capacity in Glioblastoma Microenvironment [J].
Yi, Dongye ;
Xiang, Wei ;
Zhang, Qing ;
Cen, Yongcun ;
Su, Qing ;
Zhang, Fangcheng ;
Lu, Yinping ;
Zhao, Hongyang ;
Fu, Peng .
CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2018, 46 (01) :279-290
[22]   Impact of mesenchymal stem cells' secretome on glioblastoma pathophysiology [J].
de Castro, Joana Vieira ;
Gomes, Eduardo D. ;
Granja, Sara ;
Anjo, Sandra I. ;
Baltazar, Fatima ;
Manadas, Bruno ;
Salgado, Antonio J. ;
Costa, Bruno M. .
JOURNAL OF TRANSLATIONAL MEDICINE, 2017, 15
[23]   Id4 suppresses MMP2-mediated invasion of glioblastoma-derived cells by direct inactivation of Twist1 function [J].
Rahme, G. J. ;
Israel, M. A. .
ONCOGENE, 2015, 34 (01) :53-62
[24]   Functional and molecular characterization of glioblastoma multiforme-derived cancer stem cells [J].
Tomuleasa, C. ;
Soritau, O. ;
Rus-Ciuca, I. ;
Ioani, H. ;
Susman, S. ;
Petrescu, M. ;
Timis, T. ;
Cernea, D. ;
Kacso, G. ;
Irimie, A. ;
Florian, I. S. .
JOURNAL OF BUON, 2010, 15 (03) :583-591
[25]   Targeting Glioblastoma Stem Cells: Cell Surface Markers [J].
He, J. ;
Liu, Y. ;
Lubman, D. M. .
CURRENT MEDICINAL CHEMISTRY, 2012, 19 (35) :6050-6055
[26]   REST Regulates Oncogenic Properties of Glioblastoma Stem Cells [J].
Kamal, Mohamed M. ;
Sathyan, Pratheesh ;
Singh, Sanjay K. ;
Zinn, Pascal O. ;
Marisetty, Anantha L. ;
Liang, Shoudan ;
Gumin, Joy ;
El-Mesallamy, Hala Osman ;
Suki, Dima ;
Colman, Howard ;
Fuller, Gregory N. ;
Lang, Frederick F. ;
Majumder, Sadhan .
STEM CELLS, 2012, 30 (03) :405-414
[27]   Preconditioning with secretome of neural crest-derived stem cells enhanced neurotrophic expression in mesenchymal stem cells [J].
Karimi-Haghighi, Saeideh ;
Chavoshinezhad, Sara ;
Safari, Anahid ;
Razeghian-Jahromi, Iman ;
Jamhiri, Iman ;
Khodabandeh, Zahra ;
Khajeh, Sahar ;
Zare, Shahrokh ;
Borhani-Haghighi, Afshin ;
Dianatpour, Mehdi ;
Pandamooz, Sareh ;
Salehi, Mohammad Saied .
NEUROSCIENCE LETTERS, 2022, 773
[28]   MicroRNAs in cancer: Glioblastoma and glioblastoma cancer stem cells [J].
Brower, Jeffrey V. ;
Clark, Paul A. ;
Lyon, Will ;
Kuo, John S. .
NEUROCHEMISTRY INTERNATIONAL, 2014, 77 :68-77
[29]   Role and mechanism of neural stem cells of the subventricular zone in glioblastoma [J].
Zhang, Gui-Long ;
Wang, Chuan-Fang ;
Qian, Cheng ;
Ji, Yun-Xiang ;
Wang, Ye-Zhong .
WORLD JOURNAL OF STEM CELLS, 2021, 13 (07) :877-893
[30]   Proteomic Characterization of Human Neural Stem Cells and Their Secretome During in vitro Differentiation [J].
Cervenka, Jakub ;
Tyleckova, Jirina ;
Skalnikova, Helena Kupcova ;
Kepkova, Katerina Vodickova ;
Poliakh, Ievgeniia ;
Valekova, Ivona ;
Pfeiferova, Lucie ;
Kolar, Michal ;
Vaskovicova, Michaela ;
Pankova, Tereza ;
Vodicka, Petr .
FRONTIERS IN CELLULAR NEUROSCIENCE, 2021, 14