Solar energetic particle time series analysis with Python']Python

被引:12
|
作者
Palmroos, Christian [1 ]
Gieseler, Jan [1 ]
Dresing, Nina [1 ]
Morosan, Diana E. [2 ]
Asvestari, Eleanna [2 ]
Yli-Laurila, Aleksi [1 ]
Price, Daniel J. [2 ]
Valkila, Saku [1 ]
Vainio, Rami [1 ]
机构
[1] Univ Turku, Dept Phys & Astron, Space Res Lab, Turku, Finland
[2] Univ Helsinki, Dept Phys, Helsinki, Finland
来源
FRONTIERS IN ASTRONOMY AND SPACE SCIENCES | 2022年 / 9卷
基金
芬兰科学院; 欧盟地平线“2020”;
关键词
!text type='python']python[!/text; software package; solar energetic particle (SEP); coronal mass ejection (CME); spacecraft; heliosphere; data; onset time; STEREO MISSION;
D O I
10.3389/fspas.2022.1073578
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Solar Energetic Particles (SEPs) are charged particles accelerated within the solar atmosphere or the interplanetary space by explosive phenomena such as solar flares or Coronal Mass Ejections (CMEs). Once injected into the interplanetary space, they can propagate towards Earth, causing space weather related phenomena. For their analysis, interplanetary in situ measurements of charged particles are key. The recently expanded spacecraft fleet in the heliosphere not only provides much-needed additional vantage points, but also increases the variety of missions and instruments for which data loading and processing tools are needed. This manuscript introduces a series of Python functions that will enable the scientific community to download, load, and visualize charged particle measurements of the current space missions that are especially relevant to particle research as time series or dynamic spectra. In addition, further analytical functionality is provided that allows the determination of SEP onset times as well as their inferred injection times. The full workflow, which is intended to be run within Jupyter Notebooks and can also be approachable for Python laymen, will be presented with scientific examples. All functions are written in Python, with the source code publicly available at GitHub under a permissive license. Where appropriate, available Python libraries are used, and their application is described.
引用
收藏
页数:13
相关论文
共 48 条
  • [31] Multipoint observations of coronal mass ejection and solar energetic particle events on Mars and Earth during November 2001
    Falkenberg, T. V.
    Vennerstrom, S.
    Brain, D. A.
    Delory, G.
    Taktakishvili, A.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2011, 116
  • [32] In-flight verification of the engineering design data for the Energetic Particle Detector on board the ESA/NASA Solar Orbiter
    Prieto, Manuel
    Ravanbakhsh, Ali
    Gutierrez, Oscar
    Montalvo, Aaron
    Wimmer-Schweingruber, Robert F.
    Mason, Glenn
    Cernuda, Ignacio
    Espinosa Lara, Francisco
    Carrasco, Alberto
    Martin, Cesar
    Seimetz, Lars
    Kulkarni, Shrinivasrao R.
    Panitzsch, Lauri
    Terasa, Jan-Christoph
    Schuster, Bjoern
    Yedla, Mahesh
    Knierim, Violetta
    Boettcher, Stephan, I
    Boden, Sebastian
    Elftmann, Robert
    Janitzek, Nils
    Andrews, Bruce
    Ho, George
    R-Polo, Oscar
    Martinez, Agustin
    Gomez-Herrero, Raul
    Sanchez, Sebastian
    Rodriguez-Pacheco, Javier
    ACTA ASTRONAUTICA, 2021, 187 : 12 - 23
  • [33] LONGITUDINAL AND RADIAL DEPENDENCE OF SOLAR ENERGETIC PARTICLE PEAK INTENSITIES: STEREO, ACE, SOHO, GOES, AND MESSENGER OBSERVATIONS
    Lario, D.
    Aran, A.
    Gomez-Herrero, R.
    Dresing, N.
    Heber, B.
    Ho, G. C.
    Decker, R. B.
    Roelof, E. C.
    ASTROPHYSICAL JOURNAL, 2013, 767 (01)
  • [34] Prediction of Solar Energetic Particle Event Peak Proton Intensity Using it Simple Algorithm Based on CME Speed and Direction and Observations of Associated Solar Phenomena
    Richardson, I. G.
    Mays, M. L.
    Thompson, B. J.
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2018, 16 (11): : 1862 - 1881
  • [35] Observations of Energetic-particle Population Enhancements along Intermittent Structures near the Sun from the Parker Solar Probe
    Bandyopadhyay, Riddhi
    Matthaeus, W. H.
    Parashar, T. N.
    Chhiber, R.
    Ruffolo, D.
    Goldstein, M. L.
    Maruca, B. A.
    Chasapis, A.
    Qudsi, R.
    McComas, D. J.
    Christian, E. R.
    Szalay, J. R., Jr.
    Joyce, C. J.
    Giacalone, J.
    Schwadron, N. A.
    Mitchell, D. G.
    Hill, M. E.
    Wiedenbeck, M. E.
    McNutt, R. L.
    Desai, M. I.
    Bale, Stuart D.
    Bonnell, J. W.
    de Wit, Thierry Dudok
    Goetz, Keith
    Harvey, Peter R.
    MacDowall, Robert J.
    Malaspina, David M.
    Pulupa, Marc
    Velli, M.
    Kasper, J. C.
    Korreck, K. E.
    Stevens, M.
    Case, A. W.
    Raouafi, N.
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2020, 246 (02)
  • [36] SOLAR ENERGETIC PARTICLE 3He-RICH EVENTS FROM THE NEARLY QUIET SUN IN 2007-2008
    Mason, G. M.
    Nitta, N. V.
    Cohen, C. M. S.
    Wiedenbeck, M. E.
    ASTROPHYSICAL JOURNAL LETTERS, 2009, 700 (01) : L56 - L59
  • [37] The influence of in situ pitch-angle cosine coverage on the derivation of solar energetic particle injection and interplanetary transport conditions
    Agueda, Neus
    Vainio, Rami
    Lario, David
    Sanahuja, Blai
    ADVANCES IN SPACE RESEARCH, 2009, 44 (07) : 794 - 800
  • [38] THE TREND PREDICTION FOR SPACECRAFT STATE BASED ON WAVELET ANALYSIS AND TIME SERIES METHOD
    Yu, Hui
    Liu, Jun
    Wang, Min
    Hu, Shao-Lin
    Guo, Rong
    2014 11TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2014, : 88 - 91
  • [39] Cross-correlation image analysis for real-time single particle tracking
    Werneck, L. R.
    Jessup, C.
    Brandenberger, A.
    Knowles, T.
    Lewandowski, C. W.
    Nolan, M.
    Sible, K.
    Etienne, Z. B.
    D'Urso, B.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2024, 95 (07)
  • [40] Global Variations in Event-Based Surveillance for Disease Outbreak Detection: Time Series Analysis
    Ganser, Iris
    Thiebaut, Rodolphe
    Buckeridge, David L.
    JMIR PUBLIC HEALTH AND SURVEILLANCE, 2022, 8 (10):