Multiscale maximum penalized likelihood estimators

被引:1
|
作者
Nowak, RD [1 ]
Kolaczyk, ED [1 ]
机构
[1] Rice Univ, Houston, TX 77251 USA
关键词
D O I
10.1109/ISIT.2002.1023428
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a new class of maximum penalized likelihood estimators which are analogues of popular wavelet denoising methods. The new estimators move beyond the standard signal plus Gaussian noise model to handle a much broader class of nonparametric function estimation problems including Poisson and multinomial data types. The estimators share the same sort of adaptivity and near-optimality properties as wavelet denoising methods.
引用
收藏
页码:156 / 156
页数:1
相关论文
共 50 条
  • [41] Maximum-lesion-detectability reconstruction using penalized maximum likelihood
    Qi, JY
    Huesman, RH
    2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 AND 2, 2004, : 348 - 351
  • [42] Likelihood functions and some maximum likelihood estimators for symbolic data
    Le-Rademacher, J.
    Billard, L.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (04) : 1593 - 1602
  • [43] MAXIMUM PENALIZED LIKELIHOOD ESTIMATION FOR THE ENDPOINT AND EXPONENT OF A DISTRIBUTION
    Wang, Fang
    Peng, Liang
    Qi, Yongcheng
    Xu, Meiping
    STATISTICA SINICA, 2019, 29 (01) : 203 - 224
  • [44] Penalized maximum likelihood estimation with l(1) penalty
    Loubes, J-M
    Yan, Y.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2009, 14 (J09): : 35 - 46
  • [45] PENALIZED MAXIMUM LIKELIHOOD ESTIMATION AND VARIABLE SELECTION IN GEOSTATISTICS
    Chu, Tingjin
    Zhu, Jun
    Wang, Haonan
    ANNALS OF STATISTICS, 2011, 39 (05): : 2607 - 2625
  • [46] Maximum Penalized Likelihood Kernel Regression for Fast Adaptation
    Mak, Brian Kan-Wing
    Lai, Tsz-Chung
    Tsang, Ivor W.
    Kwok, James Tin-Yau
    IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2009, 17 (07): : 1372 - 1381
  • [47] FILTERING THE MAXIMUM LIKELIHOOD FOR MULTISCALE PROBLEMS
    Papanicolaou, Andrew
    Spiliopoulos, Konstantinos
    MULTISCALE MODELING & SIMULATION, 2014, 12 (03): : 1193 - 1229
  • [48] USING A PENALIZED MAXIMUM LIKELIHOOD MODEL FOR FEATURE SELECTION
    Jalalirad, Amir
    Tjalkens, Tjalling
    2015 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2015,
  • [49] A penalized maximum likelihood approach to sparse factor analysis
    Choi, Jang
    Zou, Hui
    Oehlert, Gary
    STATISTICS AND ITS INTERFACE, 2010, 3 (04) : 429 - 436
  • [50] Penalized Maximum Likelihood Principle for Choosing Ridge Parameter
    Tran, Minh Ngoc
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2009, 38 (08) : 1610 - 1624