Multiscale maximum penalized likelihood estimators

被引:1
|
作者
Nowak, RD [1 ]
Kolaczyk, ED [1 ]
机构
[1] Rice Univ, Houston, TX 77251 USA
关键词
D O I
10.1109/ISIT.2002.1023428
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a new class of maximum penalized likelihood estimators which are analogues of popular wavelet denoising methods. The new estimators move beyond the standard signal plus Gaussian noise model to handle a much broader class of nonparametric function estimation problems including Poisson and multinomial data types. The estimators share the same sort of adaptivity and near-optimality properties as wavelet denoising methods.
引用
收藏
页码:156 / 156
页数:1
相关论文
共 50 条
  • [1] On the distribution of penalized maximum likelihood estimators: The LASSO, SCAD, and thresholding
    Poetscher, Benedikt M.
    Leeb, Hannes
    JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (09) : 2065 - 2082
  • [2] Penalized maximum likelihood estimators for the nonstationary Pearson type 3 distribution
    Song Xinyi
    Lu Fan
    Wang Hao
    Xiao Weihua
    Zhu Kui
    JOURNAL OF HYDROLOGY, 2018, 567 : 579 - 589
  • [3] Confidence sets based on penalized maximum likelihood estimators in Gaussian regression
    Poetscher, Benedikt M.
    Schneider, Ulrike
    ELECTRONIC JOURNAL OF STATISTICS, 2010, 4 : 334 - 360
  • [4] Model selection via testing:: an alternative to (penalized) maximum likelihood estimators
    Birgé, L
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2006, 42 (03): : 273 - 325
  • [5] Penalized Maximum Likelihood Methods for Finite Memory Estimators of Infinite Memory Processes
    Talata, Zsolt
    2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012, : 875 - 879
  • [6] Hierarchical Bayes, maximum a posteriori estimators, and minimax concave penalized likelihood estimation
    Strawderman, Robert L.
    Wells, Martin T.
    Schifano, Elizabeth D.
    ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 973 - 990
  • [7] Penalized likelihood estimators for truncated data
    Cope, Eric W.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (01) : 345 - 358
  • [8] CONSISTENCY OF 2 NONPARAMETRIC MAXIMUM PENALIZED LIKELIHOOD ESTIMATORS OF THE PROBABILITY DENSITY-FUNCTION
    KLONIAS, VK
    ANNALS OF STATISTICS, 1982, 10 (03): : 811 - 824
  • [9] Mean and variance of implicitly defined biased estimators (such as penalized maximum likelihood): Applications to tomography
    Fessler, JA
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 1996, 5 (03) : 493 - 506
  • [10] Maximum Likelihood, Profile Likelihood, and Penalized Likelihood: A Primer
    Cole, Stephen R.
    Chu, Haitao
    Greenland, Sander
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2014, 179 (02) : 252 - 260