Chemical process simulation using evolutionary algorithms: application to the analysis of impedance parameters of electrochemical systems

被引:0
|
作者
Gonzalez, F. [1 ]
Greiner, D. [1 ]
Aznarez, J. J. [1 ]
Mena, V. [2 ]
Souto, R. M. [3 ,4 ]
Santana, J. J. [2 ]
机构
[1] Univ Las Palmas Gran Canaria, Inst Univ Sistemas Inteligentes & Aplicac Numer I, Las Palmas Gran Canaria 35017, Spain
[2] Univ Las Palmas Gran Canaria, Dept Ingn Proc, Las Palmas Gran Canaria 35017, Spain
[3] Univ La Laguna, Dept Quim, Tenerife 38200, Spain
[4] Univ La Laguna, Inst Univ Mat & Nanotecnol, Tenerife 38200, Spain
关键词
evolutionary algorithms; differential evolution; Electrochemical Impedance Spectroscopy; metal/coating systems; parameter estimation; simulation of impedance diagrams; equivalent circuit; NONLINEAR LEAST-SQUARES; GENETIC ALGORITHMS; DIFFERENTIAL EVOLUTION; OPTIMIZATION;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical Impedance Spectroscopy (EIS) is a powerful tool in the characterization of organic coated metal systems because the method can give both qualitative and quantitative information regarding their behavior. Impedance data are fitted to a relevant electrical equivalent circuit in order to evaluate parameters directly related to the resistance and the durability of coated metal systems. The parametric analysis of the measured data is usually performed using non-linear regression algorithms, though they present the major disadvantage that correct fitting requires introduction of initial values for the parameters adequate to produce a quick and good convergence of the fitting process. An alternate method to regression algorithms for the analysis of measured impedance data in terms of equivalent circuit parameters is provided by evolutionary algorithms, more especially the differential evolution algorithms. The applicability of this method was tested by comparison with the results produced using a commercial fitting software (namely, ZSimpWin). In all the cases, better fitting results were obtained using the differential evolution algorithm.
引用
收藏
页码:278 / 283
页数:6
相关论文
共 50 条
  • [31] Optimized Process Parameters for a Reproducible Distribution of Relaxation Times Analysis of Electrochemical Systems
    Hahn, Markus
    Schindler, Stefan
    Triebs, Lisa-Charlotte
    Danzer, Michael A.
    BATTERIES-BASEL, 2019, 5 (02):
  • [32] Application of Optimization Algorithms in Injection Molding Process Parameters
    Hu, Zehao
    Wei, Wei
    Liu, Juan
    Liu, Kun
    ADVANCED DESIGN TECHNOLOGY, PTS 1-3, 2011, 308-310 : 3 - 8
  • [33] QUALITATIVE SIMULATION OF CHEMICAL PROCESS SYSTEMS - STEADY-STATE ANALYSIS
    OYELEYE, OO
    KRAMER, MA
    AICHE JOURNAL, 1988, 34 (09) : 1441 - 1454
  • [34] Empirical modelling of chemical process systems with evolutionary programming
    Greeff, DJ
    Aldrich, C
    COMPUTERS & CHEMICAL ENGINEERING, 1998, 22 (7-8) : 995 - 1005
  • [35] Empirical modelling of chemical process systems with evolutionary programming
    Greeff, D.J.
    Aldrich, C.
    Computers and Chemical Engineering, 1998, 22 (7-8): : 995 - 1005
  • [36] Application of genetic algorithms for optimising process systems
    Bochenek, R
    Jezowski, J
    Sloma, R
    INZYNIERIA CHEMICZNA I PROCESOWA, 2001, 22 (3B): : 247 - 252
  • [37] Search Process Analysis of Multiobjective Evolutionary Algorithms using Convergence-Diversity Diagram
    Kinoshita, Takato
    Masuyama, Naoki
    Nojima, Yusuke
    2022 JOINT 12TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS AND 23RD INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (SCIS&ISIS), 2022,
  • [38] Integration and application of optimization algorithms with casting process simulation
    Kokot, V
    Bernbeck, P
    MODELING OF CASTING, WELDING AND ADVANCED SOLIDIFICATION PROCESSES-X, 2003, : 487 - 494
  • [39] Estimation of the Equivalent Circuit Parameters in Transformers Using Evolutionary Algorithms
    Ascencion-Mestiza, Hector
    Maximov, Serguei
    Mezura-Montes, Efren
    Olivares-Galvan, Juan Carlos
    Ocon-Valdez, Rodrigo
    Escarela-Perez, Rafael
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2023, 28 (02)
  • [40] Estimation of α-κ-μ mobile fading channel parameters using evolutionary algorithms
    Lemos, Carlos Paula
    Veiga, Antonio Claudio Paschoarelli
    Fasolo, Sandro Adriano
    TELECOMMUNICATION SYSTEMS, 2021, 77 (01) : 189 - 211