Chemical process simulation using evolutionary algorithms: application to the analysis of impedance parameters of electrochemical systems

被引:0
|
作者
Gonzalez, F. [1 ]
Greiner, D. [1 ]
Aznarez, J. J. [1 ]
Mena, V. [2 ]
Souto, R. M. [3 ,4 ]
Santana, J. J. [2 ]
机构
[1] Univ Las Palmas Gran Canaria, Inst Univ Sistemas Inteligentes & Aplicac Numer I, Las Palmas Gran Canaria 35017, Spain
[2] Univ Las Palmas Gran Canaria, Dept Ingn Proc, Las Palmas Gran Canaria 35017, Spain
[3] Univ La Laguna, Dept Quim, Tenerife 38200, Spain
[4] Univ La Laguna, Inst Univ Mat & Nanotecnol, Tenerife 38200, Spain
关键词
evolutionary algorithms; differential evolution; Electrochemical Impedance Spectroscopy; metal/coating systems; parameter estimation; simulation of impedance diagrams; equivalent circuit; NONLINEAR LEAST-SQUARES; GENETIC ALGORITHMS; DIFFERENTIAL EVOLUTION; OPTIMIZATION;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical Impedance Spectroscopy (EIS) is a powerful tool in the characterization of organic coated metal systems because the method can give both qualitative and quantitative information regarding their behavior. Impedance data are fitted to a relevant electrical equivalent circuit in order to evaluate parameters directly related to the resistance and the durability of coated metal systems. The parametric analysis of the measured data is usually performed using non-linear regression algorithms, though they present the major disadvantage that correct fitting requires introduction of initial values for the parameters adequate to produce a quick and good convergence of the fitting process. An alternate method to regression algorithms for the analysis of measured impedance data in terms of equivalent circuit parameters is provided by evolutionary algorithms, more especially the differential evolution algorithms. The applicability of this method was tested by comparison with the results produced using a commercial fitting software (namely, ZSimpWin). In all the cases, better fitting results were obtained using the differential evolution algorithm.
引用
收藏
页码:278 / 283
页数:6
相关论文
共 50 条
  • [1] INVESTIGATION ON OPTIMIZATION OF PROCESS PARAMETERS AND CHEMICAL REACTOR GEOMETRY BY EVOLUTIONARY ALGORITHMS
    Tran Trong Dao
    Zelinka, Ivan
    23RD EUROPEAN CONFERENCE ON MODELLING AND SIMULATION (ECMS 2009), 2009, : 84 - 92
  • [2] Estimation of α-κ-μ mobile fading channel parameters using evolutionary algorithms
    Lemos, Carlos Paula
    Veiga, Antonio Claudio Paschoarelli
    Fasolo, Sandro Adriano
    TELECOMMUNICATION SYSTEMS, 2021, 77 (01) : 189 - 211
  • [3] Evolving the Parameters of Differential Evolution Using Evolutionary Algorithms
    Elsayed, Saber
    Sarker, Ruhul
    PROCEEDINGS OF THE 18TH ASIA PACIFIC SYMPOSIUM ON INTELLIGENT AND EVOLUTIONARY SYSTEMS, VOL 1, 2015, : 523 - 534
  • [4] Demand Response of Residential Houses Equipped with PV-Battery Systems: An Application Study Using Evolutionary Algorithms
    Lezama, Fernando
    Faia, Ricardo
    Faria, Pedro
    Vale, Zita
    ENERGIES, 2020, 13 (10)
  • [5] Novel electrochemical impedance simulation design via stochastic algorithms for fitting equivalent circuits
    Kappel, Marco A. A.
    Fabbri, Ricardo
    Domingos, Roberto P.
    Bastos, Ivan N.
    MEASUREMENT, 2016, 94 : 344 - 354
  • [6] Application of evolutionary algorithms with adaptive mutation to the identification of induction motor parameters at standstill
    Orlowska-Kowalska, Teresa
    Lis, Joanna
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2009, 28 (06) : 1647 - 1661
  • [7] Simultaneous optimization of design and maintenance for systems using multi-objective evolutionary algorithms and discrete simulation
    Cacereno, Andres
    Greiner, David
    Galvan, Blas
    SOFT COMPUTING, 2023, 27 (24) : 19213 - 19246
  • [8] Optimization of machining process using evolutionary algorithms
    Cukor, G
    Kuljanic, E
    Barisic, B
    AMST '05: ADVANCED MANUFACTURING SYSTEMS AND TECHNOLOGY, PROCEEDINGS, 2005, (486): : 135 - 142
  • [9] Comparative Analysis of Evolutionary Algorithms for PID Controller Optimization in Pneumatic Soft Robotic Systems: A Simulation and Experimental Study
    Massoud, Mostafa Mo.
    Libby, Jacqueline
    IEEE ACCESS, 2024, 12 : 151749 - 151769
  • [10] Toward a methodology for the optimal design of mooring systems for floating offshore platforms using evolutionary algorithms
    Monteiro B.F.
    de Pina A.A.
    Baioco J.S.
    Albrecht C.H.
    de Lima B.S.L.P.
    Jacob B.P.
    Marine Systems & Ocean Technology, 2016, 11 (3-4) : 55 - 67