p-Laplacian and Lienard-type equation

被引:6
作者
Manasevich, R
Sedziwy, S
机构
[1] UNIV CHILE,FAC CIENCIAS FIS & MATEMAT,DEPT INGN MATEMAT,SANTIAGO,CHILE
[2] JAGIELLONIAN UNIV,PL-30059 KRAKOW,POLAND
关键词
p-Laplacian; Lienard equation; limit cycle; perturbed Hamiltonian systems;
D O I
10.1216/rmjm/1181071928
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that the generalized Lienard-type equation (\u'\(p-2)u')'+mu f(u)\u'\(p-2)u'+g(u)=0 where p > 1 and mu is a small parameter has exactly one limit cycle.
引用
收藏
页码:611 / 617
页数:7
相关论文
共 7 条
[1]  
DELPINO M, 1988, HOUSTON J MATH, V14, P173
[2]   A HOMOTOPIC DEFORMATION ALONG P OF A LERAY-SCHAUDER DEGREE RESULT AND EXISTENCE FOR (/U'/P-2U')'+F(T,U)=O, U(O)=U(T)=O, P-GREATER-THAN-1 [J].
DELPINO, M ;
ELGUETA, M ;
MANASEVICH, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 80 (01) :1-13
[3]  
Hartman P, 1964, ORDINARY DIFFERENTIA
[4]  
Kaper H., 1991, Di ff er. Integral Equ., V4, P543
[5]   NOTE ON A NONLINEAR EIGENVALUE PROBLEM [J].
LINDQVIST, P .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1993, 23 (01) :281-288
[6]  
Pontryagin L.S., 1934, Fiz, V4, P883
[7]  
SEDZIWY S, UNPUB BIFURCATION LI