Error-driven dynamical hp-meshes with the Discontinuous Galerkin Method for three-dimensional wave propagation problems

被引:15
作者
Schnepp, Sascha M. [1 ]
机构
[1] Swiss Fed Inst Technol, Lab Electromagnet Fields & Microwave Elect, CH-8092 Zurich, Switzerland
关键词
Discontinuous Galerkin Method; Dynamical hp-adaptivity; Error estimation; Time-domain electromagnetics; Three-dimensional wave propagation; FINITE-ELEMENT METHODS; LEVEL HANGING NODES; REFINEMENT; EQUATIONS; STRATEGY; VERSION; DESIGN; FEM;
D O I
10.1016/j.cam.2013.12.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An hp-adaptive Discontinuous Galerkin Method for electromagnetic wave propagation phenomena in the time domain is proposed. The method is highly efficient and allows for the first time the adaptive full-wave simulation of large, time-dependent problems in three-dimensional space. Refinement is performed anisotropically in the approximation order p and the mesh step size h regardless of the resulting level of hanging nodes. For guiding the adaptation process a variant of the concept of reference solutions with largely reduced computational costs is proposed. The computational mesh is adapted such that a given error tolerance is respected throughout the entire time-domain simulation. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:353 / 368
页数:16
相关论文
共 51 条
[1]   An adaptive refinement strategy for hp-finite element computations [J].
Ainsworth, M ;
Senior, B .
APPLIED NUMERICAL MATHEMATICS, 1998, 26 (1-2) :165-178
[2]  
Ainsworth M., 2000, PUR AP M-WI
[3]  
Babuska I., 1994, SIAM REV
[4]  
Barth J., 2005, ADAPTIVE MESH REFINE, P183
[5]  
Barth T., 2003, LECT NOTES COMPUTATI
[6]   Residual based a posteriori error estimators for eddy current computation [J].
Beck, R ;
Hiptmair, R ;
Hoppe, RHW ;
Wohlmuth, B .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (01) :159-182
[7]   HP-VERSION DISCONTINUOUS GALERKIN METHODS FOR HYPERBOLIC CONSERVATION-LAWS - A PARALLEL ADAPTIVE STRATEGY [J].
BEY, KS ;
PATRA, A ;
ODEN, JT .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1995, 38 (22) :3889-3908
[8]   ERROR EQUIDISTRIBUTION AND MESH ADAPTATION [J].
CHEN, K .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (04) :798-818
[9]   Runge-Kutta discontinuous Galerkin methods for convection-dominated problems [J].
Cockburn, Bernardo ;
Shu, Chi-Wang .
Journal of Scientific Computing, 2001, 16 (03) :173-261
[10]   Discontinuous Galerkin methods - Plenary lecture presented at the 80th Annual GAMM Conference, Augsburg, 25-28 March 2002 [J].
Cockburn, B .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2003, 83 (11) :731-754