Reidemeister torsion for flat superconnections

被引:1
作者
Abad, Camilo Arias [1 ]
Schatz, Florian [2 ]
机构
[1] Univ Zurich, Inst Math, CH-8001 Zurich, Switzerland
[2] IST, Ctr Math Anal Geometry & Dynam Syst, Lisbon, Portugal
关键词
Holonomy; Iterated integrals; Superconnections; Reidemeister torsion; Simplicial complexes; ANALYTIC-TORSION; COMPLEXES; INTEGRALS;
D O I
10.1007/s40062-013-0052-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use higher parallel transport-more precisely, the integration -functor constructed in Arias Abad and Schatz (The de Rham theorem and the integration of representations up to homotopy. Int Math Res Not, 2013) and Block and Smith (A Riemann-Hilbert correspondence for infinity local systems. arXiv:0908.2843, 2012)-to define Reidemeister torsion for flat superconnections. We conjecture a version of the Cheeger-Muller theorem, namely that the combinatorial Reidemeister torsion coincides with the analytic torsion defined by Mathai and Wu (Contemp Math 546, 199-212, 2011).
引用
收藏
页码:579 / 606
页数:28
相关论文
共 16 条
[1]   The A∞ de Rham Theorem and Integration of Representations up to Homotopy [J].
Abad, Camilo Arias ;
Schaetz, Florian .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (16) :3790-3855
[2]  
Block J., 2012, ARXIV09082843
[3]  
Block J., 2010, CRM P LECT NOTES, V50
[4]   ITERATED PATH INTEGRALS [J].
CHEN, KT .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (05) :831-879
[5]  
de Rham G, 1936, MAT SBORNIK, V1, P737
[6]   Combinatorial invariants computing the Ray-Singer analytic torsion [J].
Farber, MS .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1996, 6 (04) :351-366
[7]  
Franz W, 1935, J REINE ANGEW MATH, V173, P245
[8]  
FREED DS, 1992, J REINE ANGEW MATH, V429, P75
[9]   CHENS ITERATED INTEGRALS [J].
GUGENHEIM, VKAM .
ILLINOIS JOURNAL OF MATHEMATICS, 1977, 21 (03) :703-715
[10]  
Igusa K., ARXIV09120249