The local pro-p anabelian geometry of curves

被引:87
作者
Mochizuki, S [1 ]
机构
[1] Kyoto Univ, Math Sci Res Inst, Kyoto 60601, Japan
关键词
D O I
10.1007/s002220050381
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:319 / 423
页数:105
相关论文
共 20 条
[1]   THEORIES OF FINITENESS FOR ABELIAN-VARIETIES OVER NUMBER-FIELDS [J].
FALTINGS, G .
INVENTIONES MATHEMATICAE, 1983, 73 (03) :349-366
[2]  
Faltings G., 1988, J. Amer. Math. Soc, V1, P255, DOI 10.2307/1990970
[3]   DIFFERENTIAL FORMS AND TATE MODULES OF ABELIAN-VARIETIES ON LOCAL BODIES [J].
FONTAINE, JM .
INVENTIONES MATHEMATICAE, 1982, 65 (03) :379-409
[5]   ON VARIATION OF HODGE-TATE STRUCTURES [J].
HYODO, O .
MATHEMATISCHE ANNALEN, 1989, 284 (01) :7-22
[6]  
Ihara Y., 1997, GEOMETRIC GALOIS ACT, V242, P127
[7]  
KATO K, 1990, P 1 JAMI C BALT, P191
[8]   THE PROJECTIVITY OF THE MODULI SPACE OF STABLE CURVES .2. THE STACKS MG,N [J].
KNUDSEN, FF .
MATHEMATICA SCANDINAVICA, 1983, 52 (02) :161-199
[9]   The geometry of the compactification of the Hurwitz scheme [J].
Mochizuki, S .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1995, 31 (03) :355-441
[10]  
Mochizuki S., 1996, J MATH SCI-U TOKYO, V3, P571