On Holomorphic Curves Tangent to Real Hypersurfaces of Infinite Type

被引:0
作者
Kamimoto, Joe [1 ]
机构
[1] Kyushu Univ, Fac Math, Nishi Ku, Motooka 744, Fukuoka 8190395, Japan
关键词
Holomorphic curve; Real hypersurface; D'Angelo type; Bloom-Graham type; Infinite type; FINITE-TYPE; CONTACT;
D O I
10.1007/s12220-020-00567-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to investigate the geometric properties of real hypersurfaces of D'Angelo infinite type in C-n. In order to understand the situation of flatness of these hypersurfaces, it is natural to ask whether there exists a nonconstant holomorphic curve tangent to a given hypersurface to infinite order. A sufficient condition for this existence is given by using Newton polyhedra, which is an important concept in singularity theory. More precisely, equivalence conditions are given in the case of some model hypersurfaces.
引用
收藏
页码:8063 / 8079
页数:17
相关论文
共 21 条
[1]  
[Anonymous], 1990, Distribution Theory and Fourier Analysis
[2]  
Arnold VI., 1988, Singularities of Differentiable Maps, Vol 2, Monographs in Mathematics, V83, DOI DOI 10.1007/978-1-4612-3940-6
[3]  
Arnold VI., 1985, SINGULARITIES DIFFER, VI, DOI DOI 10.1007/978-1-4612-5154-5
[4]  
Bloom T., 1977, J. Differ. Geom., V12, P171, DOI 10.4310/jdg/1214433979
[5]   SUBELLIPTIC-ESTIMATES FOR THE DBAR-NEUMANN PROBLEM ON PSEUDOCONVEX DOMAINS [J].
CATLIN, D .
ANNALS OF MATHEMATICS, 1987, 126 (01) :131-191
[6]   NECESSARY CONDITIONS FOR SUBELLIPTICITY OF THE DELTA-BAR-NEUMANN PROBLEM [J].
CATLIN, D .
ANNALS OF MATHEMATICS, 1983, 117 (01) :147-171
[7]   REAL HYPERSURFACES, ORDERS OF CONTACT, AND APPLICATIONS [J].
D'ANGELO, JP .
ANNALS OF MATHEMATICS, 1982, 115 (03) :615-637
[8]  
DAngelo J., 1993, Studies in Advanced Mathematics
[9]  
FORNAESS J. E., 2014, ILLINOIS J MATH, V58, P1, DOI DOI 10.1215/IJM/1427897165
[10]   Infinite type germs of real analytic pseudoconvex domains in C3 [J].
Fornaess, John Erik ;
Stensones, Berit .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2012, 57 (06) :705-717