ACAS sXu: Robust Decentralized Detect and Avoid for Small Unmanned Aircraft Systems

被引:28
作者
Alvarez, Luis E. [1 ]
Jessen, Ian [1 ]
Owen, Michael P. [1 ]
Silbermann, Joshua [2 ]
Wood, Paul [2 ]
机构
[1] MIT, Lincoln Lab, Lexington, MA 02420 USA
[2] Johns Hopkins Univ, Appl Phys Lab, Baltimore, MD 21218 USA
来源
2019 IEEE/AIAA 38TH DIGITAL AVIONICS SYSTEMS CONFERENCE (DASC) | 2019年
关键词
Machine Learning; Collision Avoidance; Detect and Avoid; sUAS; UTM;
D O I
10.1109/dasc43569.2019.9081631
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Demand for small unmanned aircraft systems (sUAS) continues to increase in diversity and volume, however applications are currently limited by regulatory requirements for visual observation or special use waivers. For full integration of autonomous sUAS in the national airspace system, a collision avoidance system must be implemented to enable detection and avoidance of air traffic. Building upon collision avoidance systems development over the past decade for large UAS and manned aircraft, ACAS sXu provides such a capability, enabling autonomous and decentralized sUAS collision avoidance capability against manned aircraft, UAS, and other sUAS.
引用
收藏
页数:9
相关论文
共 17 条
[1]  
[Anonymous], 2008, Project report ATC-344
[2]  
[Anonymous], 2018, AFWK62668 ASTM
[3]  
Bender W., 2019, CONCEPT USE AIRBORNE
[4]  
Deaton R. J. H. J., 2019, THESIS
[5]  
Duan ZR, 2008, SER INF MANAGE SCI, V7, P1
[6]  
Kochendedrfer M. J., 2008, ATC345 MIT LINC LAB
[7]  
Kochenderfer M.J., 2010, Model-based optimization of airborne collision avoidance logic
[8]  
Kochenderfer M J, 2011, Project Report ATC-371, P130
[9]   Airspace Encounter Models for Estimating Collision Risk [J].
Kochenderfer, Mykel J. ;
Edwards, Matthew W. A. ;
Espindle, Leo P. ;
Kuchar, James K. ;
Griffith, J. Daniel .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2010, 33 (02) :487-499
[10]   THREE QUANTITATIVE MEANS TO REMAIN WELL CLEAR FOR SMALL UAS IN THE TERMINAL AREA [J].
Lester, Edward Ted ;
Weinert, Andrew .
2019 INTEGRATED COMMUNICATIONS, NAVIGATION AND SURVEILLANCE CONFERENCE (ICNS), 2019,