Existence and stability of a solution blowing up on a sphere for an L2-supercritical nonlinear Schrodinger equation

被引:43
作者
Raphael, Pierre [1 ]
机构
[1] Univ Paris 11, Math Lab, CNRS, UMR 8628, F-91405 Orsay, France
关键词
D O I
10.1215/S0012-7094-06-13421-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the quintic two-dimensional focusing nonlinear Schrodinger equation iu(t) = -Delta u - vertical bar u vertical bar(4)u which is L-2-supercritical. Even though the existence of finite-time blow-up solutions in the energy space H-1 is known, very little is understood concerning the singularity formation. Numerics suggest the existence of a stable blow-up dynamic corresponding to a self-similar blowup at one point in space. We prove the existence of a different type of dynamic and exhibit an open set among the H-1-radial distributions of initial data for which the corresponding solution blows up infinite time on a sphere. This is the first result of an explicit description of a blow-up dynamic in the L-2-supercritical setting.
引用
收藏
页码:199 / 258
页数:60
相关论文
共 30 条
[1]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[2]  
Bergh J., 1976, GRUNDLEHREN MATH WIS, V223
[3]  
Bourgain J, 2000, GEOM FUNCT ANAL, P32
[4]  
Bourgain J., 1997, Ann. Scuola Norm. Sup. Pisa Cl. Sci., V25, P197
[5]  
CAZENAVE T, 1989, LECT NOTES MATH, V1394, P18
[6]   ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS [J].
CAZENAVE, T ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) :549-561
[7]  
Cazenave T., 2003, Semilinear Schrodinger equations, V10
[8]   Maximal functions associated to filtrations [J].
Christ, M ;
Kiselev, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 179 (02) :409-425
[9]  
FIBICH G, 2005, IN PRESS PHYS D
[10]   NONDEGENERACY OF BLOWUP FOR SEMILINEAR HEAT-EQUATIONS [J].
GIGA, Y ;
KOHN, RV .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (06) :845-884